
Nebulas Technical White Paper
The value-based blockchain operating system and search engine

Nebulas Team

April, 2018
v1.0.2

1

Abstract

Bitcoin and Ethereum successfully introduced both the “Peer-to-Peer Electronic Cash System” and

“Smart Contract” to blockchains. The industry is evolving rapidly, with emerging applications and

requirements, however for current blockchain technologies, we find there are three core challenges: estab-

lishing a measurement of value for applications on the blockchain, the ability to self-evolve & incorporate

future advancements into the underlying blockchain itself, and a healthy long term ecosystem for all

participants within the blockchain ecosystem.

Nebulas aims to address these challenges. This white paper explains the technical design ideologies

and principles of the Nebulas framework. Our framework includes:

• Nebulas Rank (NR) (§2),a new system for the measurement of value for applications on the

blockchain. Nebulas Rank measures the value of applications by considering liquidity and the

propagation of addresses & contracts used in applications on the Nebulas platform - in a trustful,

computable, and deterministic approach. With our new ranking system we’ll be able to see more

applications with real usage surfacing on the Nebulas platform.

• Nebulas Force (NF) (§3), which supports upgrading the core protocols & smart contracts directly on

the main chains. This will provide Nebulas the capability to self-evolve and incorporate the newest

technologies into the main chain, once they are ready for real world usage. With Nebulas Force,

developers can build rich applications in fast iterations, and these applications can dynamically

adapt to market changes or community feedback.

• Developer Incentive Protocol (DIP) (§4), is designed to develop our blockchain ecosystem in a better

way. The Nebulas token will be provided as an incentive for the top developers on our platform

- as measured by our Nebulas Ranking system. This will help reward the best applications and

incentivize developers to build more value for themselves and Nebulas as a whole.

• Proof of Devotion (PoD) Consensus Algorithm (§5). To build a healthy ecosystem, Nebulas proposes

three key points for our new consensus algorithm: speediness, irreversibility, and fairness.

• Search engine for decentralized applications (§6). Nebulas constructs a new type of search engine

for decentralized applications based on Nebulas ranking system. Using our engine, users will be

able to find the most useful decentralized applications when they need it.

2

Contents

1 Introduction 6

1.1 Blockchain technology introduction . 6

1.2 Business and technology challenges . 6

1.3 Nebulas design principles . 7

2 Nebulas Rank 9

2.1 Overview of Nebulas Rank . 9

2.2 Transaction Graph . 10

2.3 Ranking Algorithm . 13

2.4 Manipulation Resistance . 14

2.5 Related Works . 19

3 Nebulas Force 21

3.1 Nebulas Virtual Machine (NVM) . 21

3.2 Upgrade Design of the Protocol Code . 23

3.2.1 Block Structure . 23

3.2.2 Upgrade of the Protocol Code . 25

3.3 Upgrade Design of the Smart Contract . 26

3.3.1 Turing Complete Smart Contract Programming Language 26

3.3.2 Upgradable Contracts . 27

4 Developer Incentive Protocol (DIP) 30

4.1 Design Goals . 30

4.2 DIP Reward Distribution Algorithm . 30

4.3 Experimental Results . 31

4.4 Cheating Analysis . 32

5 Proof of Devotion (PoD) Consensus Algorithm 33

5.1 Design Goals . 33

5.2 Defects of Commonly Used Consensus Algorithms . 33

5.3 Design of the PoD Algorithm . 34

5.3.1 Generation of New Blocks . 34

5.3.2 Dynamic Validators Set . 34

5.3.3 Consensus Process . 35

5.3.4 Fork Choice . 36

5.3.5 Slashing Conditions . 36

5.4 PoD Economic Analysis . 37

3

5.4.1 Incentive Analysis . 37

5.4.2 Cheating Analysis . 37

6 Blockchain Search Engine 41

6.1 Introduction . 41

6.2 Infrastructure . 41

6.3 Nebulas Trends . 43

6.4 Keyword Query . 44

6.5 Searching for Similar Smart Contracts . 44

7 Fundamental Services and Development Tools 45

7.1 Domain Name Service . 45

7.2 Lightning Network . 45

7.3 Developer Tools . 46

8 Nebulas Token NAS 47

9 Conclusion 48

Appendix A Nebulas Account Address Design 55

A.1 Account Address . 55

A.2 Smart Contract Address . 55

Appendix B Search for Similar Smart Contracts 56

4

Glossaries

BFT Byzantine Fault Tolerant

DIP Developer Incentive Protocol

NF Nebulas Force

NNS Nebulas Name Service

NR Nebulas Rank

NVM Nebulas Virtual Machine

PoD Proof of Devotion

PoI Proof of Importance

PoS Proof of Stake

PoW Proof of Work

SCR Smart Contract Rank

SCS Smart Contract Score

WAA Weekly Active Addresses

5

1 Introduction

1.1 Blockchain technology introduction

Blockchain technology was derived from the first decentralized digital currency, Bitcoin, which was con-

ceptualized by Satoshi Nakamoto in 2008 [37]. Instead of being issued by any institutions, Bitcoin

is generated through specific algorithm and massive computing to ensure the consistency of the dis-

tributed ledger system. Ethereum [10] goes further and provides a public blockchain-based computing

platform with a Turing-complete language. The core of these cryptocurrency systems represented by Bit-

coin and Ethereum is the underlying blockchain technology. With the components of data encryption,

timestamping, distributed consensus, and economic incentives, blockchain technology brings into reality

peer-to-peer transactions, coordination and collaboration in a distributed system in which the nodes do

not need to trust each other, resolving common issues faced by centralized institutions including high

cost, low efficiency and insecure data storage.

It should be noted that blockchain technology itself is not a brand new technological innovation,

but rather an innovation which combines a series of technologies including peer-to-peer communication,

cryptography, block-chain data structures, etc.

1.2 Business and technology challenges

As more people join in the development of decentralized self-governing systems, the world has seen a

dramatic increase of the number of blockchain projects to over 2,000 projects with the value of global

encrypted digital assets amounting to $90 billion dollars. The number of blockchain users & digital asset

owners is also rising rapidly from 2 million in the beginning of 2013 to 20 million in early 2017. By 2020,

the number of blockchain users & digital asset owners is expected to reach or surpass 200 million, and

by 2025, 1 billion.

With the popularity of blockchain technology, more blockchain-based applications and use-cases are

emerging. Such use-cases have gradually extended from digital currency to a broader range of use-

cases including smart contracts developed by Ethereum, a global settlement layer developed by Ripple,

etc. These diverse application use-cases have also come with increasing demands and challenges on the

underlying blockchains themselves.

Measurement of value. One of the core challenges existing blockchains have is lack of a measurement

of value. We believe that the blockchain ecosystem needs a universal measurement of value to measure

the value of both users and smart contracts. upper-layer applications can be built on this universal

measure of value to seek deeper value in its particular use-case. In this sense, innovations in business

models will abound in the future, reminiscent of Google’s rise in the world of Internet.

6

Blockchain system upgrades. Unlike common software, the decentralized blockchain system cannot

enforce users to upgrade clients and protocols. Therefore, protocol upgrade in the blockchain system

often leads to a “hard fork” or “soft fork” resulting in huge losses for the community, which further limits

the application of the system. In the case of Bitcoin, controversy still abounds over the block scaling

debate within the community, hindering the evolution of the Bitcoin protocol. The severe under capacity

of Bitcoin’s blockchain has once led to a situation where nearly one million transactions were waiting in

the transaction pool to be written into the blocks. Users often have to pay an extra high “transaction

acceleration fee”, which seriously affect user experience. Moreover, although Ethereum’s “hard fork”

offers a temporary fix to The DAO problem, also giving rise to unintended “side effects” such as ETH

and ETC “duplicate assets” and division of its community.

The construction of blockchain application ecosystem. With distributed applications (DApps) in-

creasing rapidly on the blockchain, a sound ecosystem becomes the key to better user experience. What

we should be thinking about is how to help users search and find the desired DApp they need from a

massive collection of blockchain applications, how to encourage more developers to develop more DApps

for users, and how to assist developers with the construction of DApps. Take Ethereum for example,

hundreds of thousands of apps have been built on Ethereum already, however once this increases to the

size of applications in the Apple App Store, searching and finding DApps will be a huge challenge.

1.3 Nebulas design principles

We set out to design an incentive-based and self-evolving blockchain system to take up these challenges

and opportunities. The design principles are as follows:

• A fair ranking algorithm to define the measurement of value

We believe that the blockchain world needs a universal measurement of value to measure the value

of data at the bottom layer of blockchain stack, to help identify higher dimension of information,

thus exploring greater value of the blockchain world. We put forward the NR (Nebulas Rank) (see

§2) algorithm (similar to Google’s PageRank [9][45]), which combines liquidity, speed, width and

depth of capital on the blockchain to provide a fair ranking for blockchain users. NR is the measure

of value in the blockchain ecosystem, in which developers can measure the importance of each user,

smart contract, and DApp in different scenarios. NR has huge commercial potential and can be

used in search, recommendation, advertising and other fields.

• The self-evolving of blockchain system and applications

We believe that a well-conditioned system and the applications on it should be able to be self-

evolving, to have ability to achieve faster computing, better resilience, and enhanced user experience

under little intervention. We call this self-evolving ability “Nebulas Force” (see §3). In Nebulas’

System architecture, due to our well-designed block structure, our base protocols will become part

of the data on the blockchain and achieve upgrade through the addition of data. As for applications

7

(smart contracts) on Nebulas, we make the upgrade of smart contracts possible by enabling cross-

contract access to state variables at the bottom layer storage of smart contracts. The self-evolving

Nebulas blockchain will be advantageous over other public blockchains in terms of developmental

and survival potential. It also allows developers to respond faster to loopholes with upgrades and

prevents huge losses caused by hacking.

• The construction of blockchain application ecosystem

We develop the PoD (see §5) algorithm based on the devotion of accounts on Nebulas. This

algorithm uses NR as the measure of value to identify the accounts with great devotion to the

ecosystem, and grant them the equal probability to be bookkeeper on an equal basis to curb the

monopoly in bookkeeping. It also integrates the economic penalties in PoS to prevent malicious

damage to public blockchains, facilitating the freedom of ecosystem. The main features are faster

consensus speed and stronger anti-cheat ability than PoS and PoI.

We are also developing the DIP (Developer Incentive Protocol) (see §4) for smart contracts and

DApp developers, which aims to reward smart contract and DApp developers for their great devotion

to the community. The incentive is written into the blockchain by the bookkeeper. Based on the

Nebulas Rank mechanism, Nebulas further includes a search engine (see §6) to help users better

explore high-value applications in the blockchain.

Since Ethereum is a successful public blockchain platform with an ecosystem of massive scale, Nebulas

hopes to learn from Ethereum’s excellent design, and make our smart contracts fully compatible with it,

so that Ethereum-based applications can run on Nebulas with zero migration cost.

Based on the above principles of design, we strive to build a blockchain operating system and a

search engine based on our measurement of value. This white paper describes in detail the technologies

embedded in Nebulas. §2 explains the Nebulas Rank, a model of measure of value, and its algorithm;

§3 describes the Nebulas Force, a self-evolving capability of Nebulas; §4, §5, §6, §7 are about Nebulas’

conception and design of the ecosystem for blockchain applications; and §8 discusses NAS, the token of

Nebulas.

8

2 Nebulas Rank

2.1 Overview of Nebulas Rank

Currently the Blockchain technology and community have grown into a large scale ecosystem. However,

people’s perception of Blockchain world is still relatively flat; there is no reasonable way to evaluate

the value of an entity (such as user address) on the blockchain yet. Therefore, we try to come up with

a universal measure of value. By exploring and utilizing activities on chain, we create Nebulas Rank

through which the value of each entity (user address) is able to be quantified. Nebulas Rank is designed

to:

• serve as a native measure of value and a core algorithm for many fundamental scenarios, such as

consensus algorithm (see §5), DIP (see §4) and Blockchain search engine (see §6), etc;

• inspire diversified measures of value and deeper insights into the blockchain ecosystem, so as to

better guide business decisions and research activities.

Based on the goals above, we define the measure of value of Nebulas Rank from three dimensions:

• Liquidity, the frequency and scale of transactions, is the first dimension that Nebulas Rank mea-

sures. Finance essentially is about the social activities which optimize social resources via capital

liquidity and promote economic development. Blockchain establishes a network of value. More

transactions and larger transaction scale produce better liquidity, and better liquidity further in-

creases transactions and transaction scale, forming a complete mechanism of positive feedback.

• Propagation, the scope and depth of asset liquidity, is the second dimension that Nebulas Rank

measures. In social network, the propagation property, i.e. speed, scope and depth of information

transmission, is a key index indicating network quality and user growth. We see the same pattern in

the Blockchain world. Powerful propagation means wider and deeper asset liquidity, which improves

the quality and scale of assets in the Blockchain world.

• Interoperability is the third dimension that Nebulas Rank measures. During the early stage of

Internet, there were just simple websites and isolated information. Now information on different

platforms can be forwarded on the network, and isolated data silos are gradually being broken.

This tendency could be understood as a process of recognizing information from higher dimensional

perspective. We believe that Blockchain world also follows a similar pattern, whose development

will be faster. There will be more information of users’ assets, smart contracts and DApp. And

also, there will be more frequent interactions among them. Therefore, better interoperability will

become more important.

We choose transaction records on chain as source data for Nebulas Rank. That is because the “tra-

jectory” in Blockchain world is more clear and trustworthy than that in the real world. Transaction

data such as transfers and callings of “smart contracts” are all recorded on chain. But it is not trivial

9

to design rank algorithm for Blockchain transaction data, since the transactions in Blockchain world are

naturally anonymous and bear larger data scale than that in the real world. Three major properties for

Nebulas Rank are described below:

• Truthful. An entity must pay reasonable costs to improve its ranking, which assures that the

algorithm can identify trusted valuable users. On one hand, in scenarios like consensus algorithm

and DIP, truthful ranking encourages users to contribute truthfully in order to realize positive

feedback. On the other hand, truthful result provides meaningful hierarchy representation of all

users, which will be more helpful for decision makers;

• Computable. As a fundamental field, the result of Nebulas Rank should be accessible instantly and

thus requires low computational complexity;

• Deterministic. As required by scenarios such as consensus algorithm and DIP, the computing result

of Nebulas Rank should be identical on any client.

Next we design the basic framework of Nebulas Rank. First, transaction records are represented in

the form of graph. In the transaction graph (entity graph), every node is mapped to one entity, and

each edge represents the transfer between two entities[56]. Transaction graph embodies the fact that

money transfer among users leads to assets flowing, which helps to represent the concepts of liquidity

and propagation defined before. Meanwhile, the form of graph can clearly display the interoperability

among contracts. With the derived transaction graph, we rank nodes by their network centrality. In

the scenario of Nebulas Rank, LeaderRank[14][31] is a more reasonable measurement and outperforms

PageRank of Google and NCDAwareRank of NEM[38].

2.2 Transaction Graph

This subsection introduces how to derive transaction graph from transaction history.

First, for any time t0, we take all effective transactions among individual addresses during [t0− T, t0]

(T is a constant, generally set to one month), where every transaction can be represented as a 4-tuple

(s, r, a, t), with s as the source address, r as the target address, a as the transfer amount and t as the

block time. We define a transaction to be effective iff a > 0 and s ̸= r. Thus all effective transactions

during [t0 − T, t0] can be represented by a set of 4-tuples:

Θ(t0) = {(s, r, a, t) | t0 − T ≤ t ≤ t0 ∧ a > 0 ∧ s ̸= t} (1)

Then based on Θ(t0), construct a directed weighted simple graph G = (V,E,W), where node set, edge

set and edge weights are denoted by V , E and W respectively. Every node in V represents an individual

account’s address, and each edge in E represents the transfer intensity between two addresses. Edges are

directed and are assigned with weight we aggregating top K amounts of all related transactions:

we =

K∑
i=1

ai, s.t. ai ∈ Ae (2)

10

Ae is an ordered set consisting of amounts of all transactions from s to r in Θ(t0):

Ae = {ai | e = (s, r) ∧ (s, r, ai, t) ∈ Θ(t0) ∧ (ai ≥ aj , ∀i ≤ j)} (3)

Additionally, let N = |V |，M = |E|, where |.| is the cardinal number of a set. For simplicity, every

node is represented by an integer between 1 and N .

Fig. 1: Encouragement Function

Then, for each node, according to its in-transfers and out-transfers during [t0 − T, t0], compute

the “coinage” and denote it by Cv; based on the total transfer amount and using the “encouragement

function” shown in Fig.1, compute the encouragement value and denote it by Ev
1; use Cv and Ev of the

target nodes to reduce the edges’ weight.

Finally, take the largest weakly connected component of the whole graph, only keep nodes belong to

this component. The deleted nodes are assigned with lowest importance score by default.

The graph derivation described above contributes to the “truthful” property defined at §2.1, the

evidence of which is shown in §2.4.

Using the method described herein, the transaction graph, wherein T is 30 days and K = 2, is created

on the basis of transaction data in the main chain of Ethereum, from block #3629091(roughly on May

1st, 2017) to block #3800775(roughly on May 31st, 2017). Its visualization is shown as Fig.2. , and all

nodes are resized by their degree. It could be observed that some famous exchanges usually interacts with

more accounts than others. Besides, the identities of some addresses who contribute a lot transactions

still remains unknown.
1Encouragement function can be represented as a linear combination of two normal distributions, which outputs peak value

when the money transferred out is zero or of some ratio of the amount transferred in.

11

Fig. 2: Transaction Graph (Partial) Visualization. Large transaction scale (capital transfer) in the address

means high in-and-out degree in the node, represented by large diameter in the figure. Some nodes are labeled by

tags according to Etherscan[16]

12

2.3 Ranking Algorithm

This subsection introduces how to rank nodes by their importance in the derived transaction graph.

We adopt LeaderRank[14][31] as the main algorithm. First, add a ground node with index 0 into the

transaction graph. Then establish bi-directional link between the ground node 0 and every other node i

(1 ≤ i ≤ N), weighting by the following formula:

wi,0 = α(max{
∑

wj,i ̸=0

wj,i −
∑

wi,j ̸=0

wi,j , 0}+ λC), ∀i ∈ [1, N] (4)

w0,i = β(
∑

wi,m ̸=0

wi,m + µC), ∀i ∈ [1, N] (5)

C is the median of set {wi,j |wi,j ̸= 0, 0 ≤ i, j ≤ N}, and α, β, µ, λ are parameters.

The weighting scheme can be explained that, nodes with more in-degree receive more in-link from the

ground node; nodes with more absolute income, i.e. in-degree minus out-degree, outputs stronger link

into the ground node.

The computing process of LeaderRank is similar to PageRank, which could be understood as comput-

ing the convergence state of a Markov process. The only difference is that, after adding the ground node,

it does not need to consider the damping factor of PageRank[9][45] anymore. That is, after constructing

matrix H according to formula (7), the computing process is iterated until convergence, as formula (6)

shows, with initial settings defined by formula (8). Finally the rank score of ground node is distributed

evenly to every other node, which yields the final score for every node.

P t+1 = H × P t;P 1 = [0,
1

N
,
1

N
, . . . ,

1

N
]T (6)

hij =
w(j�i)∑
k w(j,k)

(7)

∀v ∈ V, P ∗
v ← P ∗

v +
P ∗
G

N
(8)

We suppose that LeaderRank can satisfy the measure of value and algorithm property defined in §2.1.

• The result of LeaderRank can be understood as the flux on each node in the dynamic equilib-

rium of money exchange network, which matches Nebulas Rank’s measure of value: “liquidity”,

“propagation” and “interoperability”;

• The weighing scheme defined by formula (5) and (4) makes it more difficult to attack (see discussion

in §2.4), which satisfies “truthful” property;

• LeaderRank can be computed by power iteration. Since the network is very sparse, the complexity

of matrix computation should not be high, which satisfies the properties of “computable” and

“deterministic”.

13

2.4 Manipulation Resistance

Truthfulness, i.e. the ability of resisting manipulation, is the most significant and challenging goal of

Nebulas Rank. Some manipulation methods are as follows:

1. Loop transfer. The attacker transfers along a loop topology, which allows the same money flow

over same edges repeatedly. By this means, the attacker hopes to raise the weight of related edges;

2. Transfer to random addresses, so that the out-degree of sybil node is increased, and the propagation

of fund is increased as well;

3. Form an independent network component with addresses controlled by the attacker. So the attacker

can pretend to be a central node;

4. Interact with authoritative Exchange service addresses frequently, i.e. transfer the same money

in and out an authoritative Exchange service address repeatedly, so that the attacker can acquire

better structural position in the network.

Nebulas Rank mitigates manipulation through the following mechanism:

• Owing to sliding windows of T blocks, the attacker cannot increase its rank in short term;

• Since the edge weight is decided by the related transactions with highest amount , transferring along

a loop topology cannot increase edges’ weight unlimitedly. Meanwhile, according to the sampled

data in §2.2, 91% of edges correspond to less than 2 transactions respectively. Thus K = 2 is

a reasonable choice to remain the intensity information on edges while being resistance to loop

transfer;

• In order to have higher “coinage”, the user needs to let money stay in their address for a while,

which slows down the attacking speed;

• In order to get the maximum “encouragement value”, as is shown in Fig.1, the account needs to

spend more than income or transfer out only a small ratio of income. So when forging money flow,

the attacker will get a rapid decrease in its deposit;

• Because only the giant component is selected, other independent components including the forged

one will be filtered out as noise. According to the sampled data in §2.2, there are 453, 285 nodes

and 970, 577 edges, with 1, 169 components. In the biggest component, there are 449, 746 nodes,

accounting for 99.2% of the total number. In the second biggest component, there are just 133

nodes, only accounting for 0.03%. Thus taking the giant component can remain normal part of

network as much as possible while filtering noise part out;

• Compared with webpage ranking algorithms such as PageRank and NCDawareRank[42], the mech-

anism defined by formula (5) and (4) is more “conservative” on the nodes with low income, i.e.

nodes with low in-degree get weaker links from the Ground node. In the blockchain transaction

graph, nodes with low income are more likely to be generated, and transferring to other random

nodes cannot raise in-degree. So Nebulas Rank can increase the difficulty of manipulation.

14

Next, the following conclusions are made based on the transaction graph of Ethereum in May, 2017.

First, some addresses by Nebulas Rank are listed in table 12. It can be observed that the Exchange

addresses and some accounts with high transaction throughput are ranked as top nodes.

Table 1: Top 10 addresses of Nebulas Rank and some other addresses

Rank

(Order)
Address Nebulas Rank Domain Out Amount(Ether) In Amount(Ether)

1
0x267be1c1d684f78cb4f

6a176c4911b741e4ffdc0
0.449275 Kraken_4 3214232.06 350008.00

2
0xd4c5867cec094721aab

c3c4d0fd2f2ac7878c79a
0.093798 58000.00 100947.00

3
0x027beefcbad782faf69f

ad12dee97ed894c68549
0.049277 QuadrigaCX 207440.11 65606.40

4
0x0ee4e2d09aec35bdf08

083b649033ac0a41aa75e
0.046831 56465.00 60087.96

5
0xc257274276a4e539741

ca11b590b9447b26a8051
0.037628 1071105.93 1434106.72

6
0xa53e0ca7d246a764993

f010d1fde4ad01189f4e6
0.033488 7764.68 3201.00

7
0xf259e51f791e9ed26e8

9b6cae4a7c6296bfbd0b8
0.033481 3307.00 7731.30

8
0xf195cac8452bcbc836a

4d32cfb22235af4ac1e9c
0.026343 10863.87 2315.69

9
0x94435d12c51e19d5b5c

8656763f9069d37791a1a
0.024970 12938.58 15858.90

10
0x7580ba923c01783115d

79975d6a41b3d38eff8d5
0.021670 263000.00 364793.49

16
0xcafb10ee663f465f9d10

588ac44ed20ed608c11e
0.004995 Bitfinex_1 360000.00 1435858.40

51
0xd94c9ff168dc6aebf9b

6cc86deff54f3fb0afc33
0.000868 yunbi_1 1179224.74 1202539.53

64
0x70faa28a6b8d6829a4b

1e649d26ec9a2a39ba413
0.000590 Shapeshift 52501.81 651933.49

2Source of domain: Etherscan[16]

15

Then, we observe the relationship between transaction amount and Nebulas Rank. Since blockchain

transferring can be understood as network flow of “money exchange”, according to Borgatti [5]’s work,

the degree of nodes, i.e. sum of adjacent edges’ weights, is a proper centrality metric for such network

flow. From the perspective of each node, the degree, i.e. transaction throughput amount (amount

transferred in plus amount transferred out), represents local information within one hop and reflects the

historical money flow over corresponding addresses. So it could be a baseline for ranking algorithms.

The relationship between transaction amount and Nebulas Rank is shown in Fig.3: no node can acquire

high rank with low transaction amount; nodes with high transaction amount still need to meet some

conditions to get high rank, which roughly confirms the truthfulness of Nebulas Rank.

Fig. 3: Nebulas Rank v.s. Transaction Amount X-axis represents Rank Value, and Y-axis represents Transaction

Amount, both in logarithmic form. The diagonal line represents that transaction amount and rank value is directly

proportional. A good algorithm should make the data points fall as little as possible in the lower right of the diagonal

line, to avoid nodes with low transaction throughput to get high rank.

According to the above simple analysis, it can be deduced that the first three types of manipulation

can be filtered effectively by specific methods. Therefore finally, we just need to simulate the last type

and observe the resistance effect. The attacker chooses one authoritative Exchange node to create loop

transfers for X times. Every loop transfer contains 2 phases: first the attacker transfers Y Ether to the

Exchange through some newly created temporary address; then the attacker retrieves its money back

from the Exchange through another address. The attacking topology and process is demonstrated in

Fig.4. This type of attack exploits the fact that an Exchange service is willing to establish links with

any nodes at a very low cost. Although normal nodes can also transfer with Exchange nodes frequently,

16

but such attacking activities do not improve effective money liquidity and should be distinguished from

normal activities.

Shapeshfit

...

Sybil

owned by sybil attacker

normal nodes

4h+1 4h+4 4 1

4h+2 4h+3 3 2

Fig. 4: Schematic of Loop Attack Utilizing Exchange Address The first and h-th loop attacks are shown in the

figure. The selected authoritative Exchange node is Shapeshift; Edge label indicates temporal sequence; The transfer

amount between nodes controlled by Sybil attacker and Shapeshift node is Y Ether; There are X loop transfers during

the manipulation.

We choose Shapeshift(0x70faa28a6b8d6829a4b1e649d26ec9a2a39ba413) as the authoritative Exchange

address. The results is shown in Fig.5: 1) As is shown in Fig.5a, with the attacker investing more capital,

no algorithm is able to prevent the attacker’s rank from being better, while the transaction graph de-

fined in §2.2 reduces the attacking effect. Nebulas Rank can not only prefer nodes with high transaction

throughput, but also resist manipulation to some extent; 2) As is shown in Fig.5b, with the attacker mak-

ing more loop transfers, the transaction graph defined at §2.2 can let the attacker’s rank be worse. The

reason is that such transaction graph considers factors like coinage and encouragement value. Meanwhile,

Nebulas Rank could strengthen these factors, bringing more resistance against manipulation.

17

●

● ● ● ● ●

100 10000

Deposit (Ether)

R
an

ki
ng

 (
lo

w
er

 b
et

te
r)

Alglorithm

●●●●

NCD*

NEM

NR

PR#

(a) The effect of attacker’s capital size on attacker’s rank, with the number of loop transfers is fixed as 5, 000. (All

axises are in logarithmic form)

●

●

● ● ● ●

100 10000

#Attacks

R
an

ki
ng

 (
lo

w
er

 b
et

te
r)

Alglorithm

●●●●

NCD*

NEM

NR

PR#

(b) The effect of number of loop transfers on the attacker’s rank, with attacker’s capital fixed as Ξ5000 (All axises

are in logarithmic form)

Fig. 5: Resistance against manipulation

The attacking method is shown as Fig.4; x-axis represents attacker’s capital; y-axis represents attacker’s ranking order (larger

ranking order means the attacker fails to get better score, indicating higher resistance ability of the algorithm)

NR：The transaction graph is defined at §2.2, and ranking algorithm is described at §2.3;

NCD∗: The transaction graph is defined at §2.2, with NCDawareRank algorithm;

NEM：The transaction graph is introduced by [38], with NCDawareRank

PR#: The transaction graph is introduced by [38]，with PageRank algorithm

The damping factor of PageRank is 0.15; The clustering algorithm used by NCDawareRank is pscan[12], η = 0.75, µ = 0.1

18

2.5 Related Works

Centrality, the core ranking index, is a most studied concept in network science since decades ago[39].

There are a body of literatures introducing various centralities, including degree centrality[21], eigenvec-

tor centrality[4], Katz centrality[27], closeness centrality[50], betweenness centrality[22][23][24][43][40],

PageRank[9], HITS[29], SALSA[51], etc. Besides, there are some fundamental works trying to clearly

classify and review these measurements by a unified framework[5][6][33]. When designing Nebulas Rank,

before proper centrality is adopted, first we need to consider the property of graph. Blockchain trans-

action graph’s scenario is most similar to the money exchange flow network mentioned in [5]. But the

related algorithms mentioned by their work, such as flow betweenness centrality[24] and random-walk be-

tweenness centrality (aka. current betweenness centrality)[40], are compute intensive and do not satisfy

the property of “computable” with the large scale of Blockchain transaction graph.

Since Bitcoin[37] system released in 2009, researchers have done some statistical and empirical analy-

sis on Bitcoin’s transaction graph[49][26][41][2], and some use the transaction graph structure to discuss

anonymity in Bitcoin[34][44][46][20][19]. After other cryptocurrencies emerged and become popular,

transaction graph analysis is conducted for more blockchains[13][1]. Nebulas Rank adopts their trans-

action graph concept, i.e. Entity Graph in [56], with minor revisions. That is, each account, or set

of accounts belonging to the same people, is mapped as a node, and each directed edge represents

the intensity of transferring between two accounts. Actually before blockchain system like Bitcoin was

invented, scientists have tried to study some financial networks among banks and global trading en-

tities[48][8][52][3][17][36][7][30][53]. Comparing with blockchain transaction graph, these early studied

finical networks are defined not only by transferring activities, but also by extra information such as

loan. Moreover, the scale of these networks is much smaller. To conclude, there is rarely research work

proposing custom ranking method for large scale transaction graph, especially blockchain transaction

graph.

The most relevant work with Nebulas Rank is NEM[38]’s Proof-of-Importance scheme. It adopts

NCDawareRank[42], which exploits the clustering effect of network topology, as the ranking algorithm,

with clustering algorithm based on SCAN algorithm[57][54][12]. Although community structure does exist

in transaction graph and should be helpful to handle with spam nodes, it does not guarantee that all nodes

in Blockchain world controlled by one entity in the real world are mapped into one cluster, which leads to

large room for manipulation. Besides, Fleder, Kester, and Pillai [20] uses PageRank[9][45] as an assisting

metric to discover interesting addresses and analyze their activities. However, their work does not provide

an automated framework to identify important nodes. Instead, it still relies on subjective analysis, which

does not match Nebulas Rank’s context. The algorithm we choose is LeaderRank[14][31]. It is a simple

yet effective variant of PageRank[9][45]. In PageRank, every node is assigned with identical teleportation

parameter, while LeaderRank adds a ground node, assigning different teleportation parameters for each

node. The weighing scheme of Nebulas Rank is partly from Li et al. [31]’s design, which allows nodes

with more in-degree to be more likely visited by teleportation. Adopting LeaderRank algorithm could

19

yield results more suitable for the scenario of Blockchain.

20

3 Nebulas Force

We use Nebulas Force (NF) to describe the evolving capability of the blockchain system and its applica-

tions. As the first driving force of the blockchain system and its application development, the Nebulas

Force includes three aspects, that is, the Nebulas Virtual Machine (NVM), the upgrade of the protocol

code in the blockchain system, and the upgrade of the smart contract running on the blockchain system.

In Nebulas, we will introduce LLVM to implement the Nebulas Virtual Machine (NVM). The protocol

code and the smart contract code will be compiled into NVM bytecode, which is dynamically compiled

and optimized with the LLVM just-in-time (JIT) compilation function and eventually executed in the

sandbox environment. Meanwhile, with the modular architecture of LLVM, developers can use their

familiar programming languages to implement safer and higher-performance smart contracts, providing

users with various decentralized applications.

For the upgrade of the protocol code in Nebulas, Nebulas will add the protocol code to block structure

to carry out the upgrade of the protocol code by supplementing additional data on chains so as to

avoid the possible split or bifurcation between developers and communities. With the development

of Nebulas communities, the upgrade capability of NF and basic protocols will be gradually open to

communities, and communities will define the evolving direction of the Nebulas and achieve its upgrade

target. With the help of the core technology and the opening concept of NF, Nebulas will have a

continuously evolving space and an infinitely evolving possibility. For example, a series of parameters

including the NR algorithm parameter, the PoD incentive amount, the consensus algorithm and the

production rate of new tokens can be gradually adjusted during the development of Nebulas without

upgrading most client codes.

The smart contract is usually considered to be permanent and does not support upgrading. With

the help of the design of underlying storage of the smart contract to support the cross-contract visit of

state variables, Nebulas can complete the upgrade of the smart contract. This solution is very friendly

to developers, making them respond to bugs more rapidly, which can prevent huge losses to users caused

by any hacker events.

3.1 Nebulas Virtual Machine (NVM)

We will introduce LLVM [32] as the main component of NVM and LLVM bytecode as the NVM bytecode.

The NVM bytecode is dynamically compiled and optimized through LLVM JIT and is executed in the

NVM sandbox environment. With this architecture design, the performance and security of the core

code and the smart contract of Nebulas can be continuously improved with the introduction of LLVM.

LLVM is a collection of highly modularized compiler toolchains and technologies, which was used as

a code compilation framework in Google, Apple and many other companies. LLVM provides neutral

intermediate representations (LLVM IR) and the corresponding compilation infrastructure, and offers a

brand new set of compilation strategies regard to these infrastructure, including optimization of LLVM

21

IR, code generation from the LLVM IR to the LLVM bytecode and direct execution of the LLVM byte-

code in different hardware platforms via the LLVM JIT, shown in Fig.6.

C frontend

C++ frontend

Go frontend

LLVM

common

optimizer

ARM backend

x86 backend

Power PC backend

.c

.cpp

.go

target specific

machine code

Fig. 6: LLVM

We construct the NVM based on LLVM, shown in Fig.7. First of all, we provide the underlying

API libraries for blockchains. After that, we construct compiler frontend for different languages, such as

Solidity, JavaScript, C/C ++, Go, etc. Then, we use the toolchain provided by LLVM to generate the

LLVM bytecode. Finally, the LLVM bytecode is executed in a safe sandbox environment provided by

NVM through JIT engine of LLVM.

Nebulas Virtual Machine

LLVM

X86 Backend ARM Backend

LLVM Optimizer

Sandbox

Runtime

C/C++/OC …JavaScript HaskellSol

Fig. 7: Nebulas Virtual Machine

NVM is an important cornerstone of the Nebulas Force. When any new protocol code or smart

contract is released, the LLVM bytecode is generated after the new code is complied by the LLVM

compiler module in NVM and is released to the chain. After confirmed on chain, the new code will

be complied and optimized by LLVM JIT, and then into the sandbox to replace the old code and be

executed, shown in Fig.8.

With LLVM (see Fig.6), NVM also supports developers to develop smart contracts and applications

with their familiar programming languages, such as Solidity, more flexible JavaScript, and even pure

functions type of language Haskell. In addition to these popular languages, NVM can also provide

customized high-level languages for different areas and scenarios, such as DSL (domain-specific language)

22

Smart
Contract

Smart
Contract

Smart
Contract

Smart Contract

Frontend

NVM IRNVM IRNVM
Bytecode

1. Compile

2. Deploy

Block NBlock N-1

Tx: {NVM Bytecode}Tx

3. Execute

LLVM Optimizer

NVM Sandbox

Execute Binary Code

Fig. 8: The operation mechanism of the Nebulas Virtual Machine

for financial systems. These high-level languages are easier to be formally verified, further improving

code robustness and security, and more conducive to the developers developing richer Smart contract

and application.

3.2 Upgrade Design of the Protocol Code

We first give the block structure of the Nebulas, and then discuss how to upgrade the protocol code

based on the block structure.

3.2.1 Block Structure

The Nebulas block data structure contains, but is not limited to, the following:

• Header：Block Header

– Height：block height

– ParentHash：parent block hash

– Ts：timestamp

– Miner：miner address

– Dynasty：the consensus dynasty of the block

– Epoch：the consensus age of the block

– StateRoot：state root hash

– TxsRoot：transaction root hash

23

– ReceiptsRoot：transaction receipt hash

– TransNum：number of transactions

• Transactions：transaction data (including multiple transactions)

– From：transaction sender address

– To：transaction receiver address, for creating a smart contract with a value 0x0

– Value：transfer amount

– Data：Transaction payload. It’s the smart contract bytecode if the transaction is for creating

a smart contract; It’s the name of the calling function and the entry if the transaction is a

smart contract call.

– Signature：transaction signature

– Gas：gas limit

– GasPrice：gas unit price

– Nonce：the uniqueness of transactions

• Votes：Prepare and Commit Votes (including multiple), used in PoD (see §5) consensus algorithm

– From：voter

– VoteHash：hash of the block voted for

– Hv：the height of the block voted for

– Hvs：the height of an ancestral block of the block voted for

– VoteType：voting type，Prepare or Commit

– Signature：vote signature

• Protocol Code：The protocol code (only 0 or 1 in a block)

– Hash：hash of the protocol code

– Code：the bytecode of the protocol code

– ValidStartBlock：the start block number that protocol come into effect

– Signature：signautre (sign by the developer community)

– Version：the protocol code version number, and each upgrade needs to be incremented to

prevent malicious accounts from rolling back to the old protocol code

– Nonce：the uniqueness of protocol code

• Nebulas Rank：Nebula index (calculated once a week, most blocks haven’t this section)

– RankVersion：NR version

– RankRoot：NR rank hash

– RankRecords：NR rank record

* Address：Account address tag

24

Header Transactions Protocol Code

Height

ParentHash

Ts

Miner

StateRoot

TxsRoot

ReceiptsRoot

TransNum

From

To

Value

Data

Signature

Gas

Gas Price

Nonce

From

Dynasty

VoteHash

Hv

Hvs

Votes

Hash

Code

Signature

Version

NonceVoteType

SignatureEpoch

RankVersion

RankRecords

Nebulas Rank

Address

Score

RankRoot

Fig. 9: Block Structure

* Score：NR value

Similar to other cryptocurrency systems, the interaction between the account and the blockchain is

done through a particular transaction. The account creates a transaction, which is signed with a private

key, and sends it to any node in the blockchain and broadcasts it to full network node through the P2P

network. During the fixed block time interval, the nodes specified by the PoD consensus algorithm (see

§5) collect all transactions in the time and pack them into blocks of standard format and broadcast them

to the rest of the network. After verification by each node, the new block is appended into the local

ledger and becomes a part of the global ledger.

In Ethereum, transactions are divided into two types: ordinary account transaction and smart contract

transaction. We add new transaction types to the blocks of Nebulas: protocol code and the Nebulas

Rank. The protocol code, as a part of the blockchain data, is stored on the chain, and the upgrade of

the basic protocol of Nebulas is carried out through supplementing additional data on chains. Based on

the NR ranking algorithm, the NR value of each account is calculated in each cycle and saved in the

corresponding chain to facilitate the real-time NR value calling and historical ranking query.

3.2.2 Upgrade of the Protocol Code

The Nebulas client node can obtain the compiled virtual machine bytecode (NVM bytecode) from the

storage area of the Protocol Code in the latest block. If there are no data of the Protocol Code in the

latest block, it indicates that the protocol code has no change and has to trace back to the Protocol

Code in the nearest block. Any actions of the protocol code of blockchains will be determined by the

Protocol Code, including the authentication algorithm, the packing rules, the NR algorithm, the incentive

25

mechanism, etc. Almost all actions of blockchains can be defined by the Protocol Code.

If the protocol code needs to be upgraded, the Nebulas development team will be responsible for its

development and the code will be released to open channels for discussion and voting in communities.

Voting can be carried out in the form of the smart contract or voting in the forum. If the majority

of community members agree to upgrade the protocol, the Nebulas development team will pack the

latest code into Protocol Code transaction, and release it to all nodes of the whole network; only if the

bookkeeping nodes include it in blocks, it will become valid at the specified block height. This type of

blockchain protocol upgrade is transparent to clients without soft and hard fork.

In order to ensure that the protocol code is released after authorization, the publisher of the Protocol

Code uses the address reserved by the core Nebulas, cannot be changed with hard code within the genesis

block. All bookkeeping nodes will verify the signature of Protocol Code. If the signature fails to pass

the verification, it will be deemed as the illegal data.

The subsequent improvement measure is to change the signature verification of the Protocol Code

into the M-of-N multi-signature, which can also be implemented through the upgrade of the Protocol

Code.

3.3 Upgrade Design of the Smart Contract

3.3.1 Turing Complete Smart Contract Programming Language

A smart contract is a set of promises defined in the digital form, including agreements for the execution of

those promises by the contract participants. Physically, the carrier of the smart contract is the computer

code that the computer can recognize and can be operated on the computer. Bitcoin script language is an

imperative and stack-based programming language, and because it is Turing incomplete, there are some

limitations on its applications. The Ethereum is the world’s first blockchain system that implements

Turing complete smart contracts. The adopted programming language is Solidity and Serpent, enabling

developers to develop a wide variety of applications in a rapid and efficient manner. After the smart

contract code is published on the blockchain, it can be automatically executed without participation of

any agencies.

In the early stage, the smart contract programming language in the Nebulas was fully compatible with

Solidity of Ethereum, making it easy for developers to migrate the smart contract applications developed

for Ethereum into Nebulas seamlessly. We add some instruction sets related to the Nebulas Rank to

Solidity language, facilitating developers to obtain the NR value of any users. After that, based on

NVM, we provide support to various programming languages, making it easy for developers to program

with their favorite advanced languages, such as Java, Python, Go, JavaScript, Scala, etc., or even create

customized applications with certain advanced languages in a specific field.

26

3.3.2 Upgradable Contracts

Currently, for the design of the smart contract of Ethereum, once the code is made, it cannot be changed

any more. From the moment that the code logic is made, it cannot be upgraded forever. If the smart

contract serves as an agreement, it is required to be unchangeable, which represents an agreement that its

operation is determined. However, as the smart contract has been increasingly widely used, its workflow

and code become more and more complicated. It is found that it looks like a real contract in the real

world. If it fails to be reviewed carefully, it is difficult to prevent human errors in the design and coding

process. Once hackers find any bugs, the loss is always very significant. In June 2016, the DAO Attack

was due to a code defect, causing a total loss of $60 million to the users of Ethereum. In addition, a

recent bug of Parity Wallet resulted in a loss of 150,000 ETH, valued at $30 million. Since the bitcoin is

designed with Turing incompleteness and many script instructions have been deleted, its security level is

very high.

Although there are many best practices in smart contract programing, more strict reviewing process

and even formal verification tools to verify the certainty of the smart contract through mathematical

proofs, codes cannot be totally bug-free. When looking back into our currently centralized Internet world,

we find that Internet services can be upgraded so as to fix different bugs emerged in the development

process. Perfect application system cannot be designed, but is evolved gradually. We believe that

the fundamental requirement of sorting out security problem of the smart contract is to formulate an

upgradable design solution for the smart contract.

There are some solutions to the upgradeable design of the smart contract in Ethereum, which are

generally divided into two categories. The first one is the Proxy Contract available to the public. Its

code is very simple, only forwarding the request to the following real function contract. When the

contract needs upgrading, just make the pointer of the internal function contract of the Proxy Contract

point to the new contract. The second one is to separate the code contract from storage contract. The

storage contract is responsible for providing the external contract with methods to read and write the

internal state. The code contract is responsible for the real business logic, and when upgrading, it is only

responsible for deploying the new code contract so as to lose no state. These two solutions have their own

limitations correspondingly, so they cannot solve all the problems. For example, the separation between

the code contract and storage contract makes it more complicated. Sometimes it is even unfeasible.

Although the Proxy Contract is able to point to the new contract, the state data of the old contract

cannot be migrated. Some contracts are not well designed at the initial development stage, so they fail

to leave any interface for later upgrade.

We designed a simple smart contract upgrade solution. In this way, at the language level, another

contract can read and write a contract state variable directly (in line with the security constraints). For

example, there is a Token contract, and its code is as shown in Table 10.

When the contract is deployed, the balances variable is marked with the keyword of shared, and when

27

contract Token {

mapping (address => uint256) balances shared;

function transfer(address _to, uint256 _value) returns (bool success) {

if (balances[msg.sender] >= _value) {

balances[msg.sender] -= _value;

balances[_to] += _value;

return true;

} else {

return false;

}

}

function balanceOf(address _owner) constant returns (uint256 balance) {

return balances[_owner];

}

}

Fig. 10: Original Contract Code

it is compiled into bytecode for operation, the virtual machine will design the storage area separately

for this variable. For the variable that is not marked with the keyword of shared, it cannot be accessed

directly by other contracts.

If a bug in the transfer function of the original code needs modifying, check the _value and deploy

the new smart contract code as shown in Table 11.

After the new contract is deployed, the old contract can choose selfdestruct, which means that it

cannot be accessed any more. But the shared variable will be permanently reserved. The new contract can

completely inherit the asset of balances from the old contract without losing any state, so no additional

migration is required. However, when developing a smart contract, it is necessary to declare the critical

state variable to be shared. The compiler will specially handle the storage area of the variable so as to

ensure that it can be accessed by other authorized contracts.

In order to ensure the security, the contract upgrade and the old contract must use the same creator,

otherwise an exception will be thrown during operation.

There is a moral problem in this design. Once the provisions of the contract has been proposed and

concluded, they should not be modified. Any change later should be agreed by the contract audiences.

We plan to introduce a voting mechanism to approve the upgrade of the smart contract, preventing the

contract from being modified silently by the contract creator.

28

[baseContractAddress="0x5d65d971895edc438f465c17db6992698a52318d"]

//baseContractAddress is the address of the old contract

contract Token {

mapping (address => uint256) balances shared;

function transfer(address _to, uint256 _value) returns (bool success) {

if (balances[msg.sender] >= _value && _value > 0) {

balances[msg.sender] -= _value;

balances[_to] += _value;

return true;

} else {

return false;

}

}

function balanceOf(address _owner) constant returns (uint256 balance) {

return balances[_owner];

}

}

Fig. 11: New Contract Code

With this upgradable solution, the DAO Attack or Parity bug or similar bug attack events can be

fixed more rapidly, rather than through hard fork. After repair, assets of all users can continue to be

used without migration.

29

4 Developer Incentive Protocol (DIP)

4.1 Design Goals

In order to create a good community for Nebulas, we propose the Developer Incentive Protocol (DIP) for

smart contract developers and express our appreciation to outstanding smart contract developers who

contribute to Nebulas by rewarding them NAS.

4.2 DIP Reward Distribution Algorithm

We believe that an excellent smart contract depends on how many users are willing to use it. More

high-value accounts, better smart contract. As a kind of universal value criteria of accounts, NR can

be used to assess high-value accounts. The design of DIP combines NR and the common WAU (weekly

active users) concept, the total WAU value measure is used to evaluate the value measure of the smart

contract.

DIP is carried out once a week. For Smart Contract C, it is assumed that the active account address

set of this week is WAA (Weekly Active Addresses). According to the NR ranking in §2.3 (Top X is

taken), the sum of NRs of weekly active addresses is calculated as the SCS (Smart Contract Score) of

Contract C, as shown in Equation 9.

SCS(C) =
∑

addr∈WAA

(max{X + 1−NR(addr), 0}) (9)

Based on weekly SCSs, they are sorted out from high to low for SCR (Smart Contract Rank). Top

N smart contracts are taken, and the corresponding developers will share M NASs based on proportion.

In order to avoid malicious ranking scam, the DIP distribution curve is designed to be even as shown

in Fig.12, but it is still ensured that the revenue of Rank 1 is 2 times of that of Rank N to indicate the

difference in SCS. The proportion constraints are as shown in Equation 10.

Coin(C) = kln(N + 1− SCR(C)) + b (10)

s.t. kln(N) + b = 2b

N∑
x=1

(kln(x) + b) = M

DIP rewards will be calculated separately and distributed by each node. Assuming that one block in

Nebulas is generated every S second (s), DIP rewards will be calculated once every 24*7*3600/S blocks

for all nodes, and will be distributed to the corresponding smart contract cash-out addresses.

In order to encourage the diversity of Nebulas ecological smart contracts and stimulate outstanding

results of more new developers, DIP stipulates that each smart contract can be rewarded up to K time(s).

30

Rank

Coin

N

X/2
X

Fig. 12: DIP Reward Distribution Curve

DIP will select Top N smart contracts qualified for rewards according to ranking so as to promote the

development of the ecology construction of blockchain applications.

4.3 Experimental Results

We collected the transaction data occurred in May 2017 from Ethereum and calculated the DIP ranking

of the first week, as shown in Table 2.

Table 2: Top 10 of DIP Ranking Results of the First Week in May 20171

Contract Address Score Description2

0xa74476443119a942de498590fe1f2454d7d4ac0d 264456363.0 GolemToken

0x49edf201c1e139282643d5e7c6fb0c7219ad1db7 207900181.0 TokenCard-ICO

0x48c80f1f4d53d5951e5d5438b54cba84f29f32a5 129625776.0 REP-Augur-OLD

0x6810e776880c02933d47db1b9fc05908e5386b96 108324489.0 Gnosis-TokenContract

0x6090a6e47849629b7245dfa1ca21d94cd15878ef 54429341.0 ENS-Registrar

0x607f4c5bb672230e8672085532f7e901544a7375 48526808.0 RLC

0x8d12a197cb00d4747a1fe03395095ce2a5cc6819 46498412.0 etherdelta_2

0xf7b098298f7c69fc14610bf71d5e02c60792894c 43746158.0 GUPToken

0xaaaf91d9b90df800df4f55c205fd6989c977e73a 42026627.0 TokenCardContract

0xaec2e87e0a235266d9c5adc9deb4b2e29b54d009 41427314.0 singularDTVToken

1 block range [3629091, 3665815]
2 from etherscan.io

It can be seen that the top-ranked contracts are more famous and more active in the calculation cycle,

which are in line with our original intention of motivating the eco-builders.

31

4.4 Cheating Analysis

The smart contract can only be called passively. Therefore, if a cheater wants to increase his/her smart

contract ranking, he/she has to find sufficient high-NR ranking accounts to call his/her contract.

First of all, it will be impossible for cheaters to improve their DIP ranking at the cost of zero. Provided

that a cheater wants to improve his/her ranking of Contract C and forges a great number of accounts

for it. However, when SCS is calculated in Equation 9, only Top X of SCS of calling in the NR ranking

is greater than 0, while the NR ranking of his/her newly forged accounts will be outside Top X. Even if

Contract C is called, it will impose no impact on the DIP ranking.

Secondly, if a cheater is willing to pay a certain price for improving his/her DIP ranking of the

contract, two options are available for him/her. The first one is to forge accounts with high NR and call

Contract C at his/her cost so as to improve the ranking of Contract C. It has been analyzed for forging

accounts with the high NR in §2.4. To improve the NR for each account, a vast sum of money is required

to forge the special topology of such account. Besides, as NR is updated periodically, it will be very

expensive to maintain high NR. The second one is to find a great number of accounts with high NR and

persuade or bribe their owners to call Contract C. However, it is difficult for such off-chain actions to be

scaled up. What’s worse, these accounts with high NR found by the cheater at a great cost will account

for only a small part of Top X, which will impose almost no impact on really outstanding contracts.

32

5 Proof of Devotion (PoD) Consensus Algorithm

5.1 Design Goals

The consensus algorithm is one of the cornerstones of blockchains, and its rapidity and irreversibility are

our focus. In addition, in order to build a good ecology of Nebulas, we believe that fairness is equally

important. If the big capital can easily gain power to control the block consensus in Nebulas, the interests

of many developers and users will be damaged. It is difficult for an ecology which cannot guarantee the

interests of contributors to create in-depth value, as it goes against the design principles of Nebulas.

Thus, the consensus algorithm should be designed to ensure the rapidity and irreversibility first, on

which basis we will pursue fairness as much as possible, so as to guarantee the interests of contributors

in Nebulas.

5.2 Defects of Commonly Used Consensus Algorithms

We have tried to find suitable commonly used consensus algorithms that match with our design goals,

but these algorithms cannot completely meet our requirements.

The PoW (Proof of Work) consensus algorithm is a zero-sum game, which uses the competitive hash

calculation to determine the bookkeeper, rendering a great amount of electric power in the whole ecology

wasted in the competition when any blocks are fed out, and thus the mining cost is high and the speed

is restricted. With the increase of nodes involved in mining, the probability of each node to obtain the

bookkeeping right will be reduced, leading to a continuous rise in the cost of stable feed-out of blocks

under the PoW protocol. The Bitcoin, which continues to increase the difficulty of mining, has to face

the situation sooner or later where the mining machine cannot make ends meet, while Ethereum has

long been considering the use of the new PoS consensus algorithm Casper [55] to gradually replace the

current PoW consensus [11]. It can be seen that in view of the mining speed and the economic cost, the

PoW is not beneficial to the long-term rapid development of the ecology of Nebulas, which is against our

“rapid” goals.

The PoS (Proof of Stake) consensus algorithm attempts to use the asset amount to replace the hash

rate and distribute the probability of obtaining the bookkeeping right according to the coin age or deposit

amount. Currently, both Peercoin [28] and the Casper Protocol of Ethereum adopt the PoS consensus

algorithm. This algorithm overcomes the shortcoming of the high power consumption of PoW but visually

enlarges the impact of the capital on the probability distribution of the bookkeeping right. Compared

with PoW, the big capital under PoS is more likely to gain power to control the ecology and form large

group monopoly, possibly damaging the interests of the ecology contributors and impacting adversely on

the value generation of Nebulas, all of which are against our “fairness” goal.

The PoI (Proof of Importance) consensus algorithm was first proposed by Nem [38]. Different from

PoS, the concept of account importance is introduced to PoI, and the account importance score is used

33

to distribute the probability of the bookkeeping right. This algorithm overcomes the shortcoming of the

high power consumption of PoW and relieves the PoS capital monopoly crisis, but exposes the “nothing-

at-stake” problem. The cost for a cheater to reverse a block is significantly reduced, which goes against

our “irreversibility” goal.

In short, in view of the discrepancy between commonly used consensus algorithms and our goals, we

have proposed the PoD (Proof of Devotion) algorithm to integrate PoI, which evaluates the comprehensive

account influence, with PoS, which involves strict economic penalties. PoS enhances the irreversibility of

PoI, while PoI reversely contains the monopoly of PoS, which facilitates the free and rapid development

of the ecology.

5.3 Design of the PoD Algorithm

5.3.1 Generation of New Blocks

Similar to the PoI consensus algorithm that selects highly important accounts, the PoD selects the

accounts with high influence in the ecology. The difference lies in that the PoD empowers the selected

accounts to have the bookkeeping right with equal probability to participate in new block generation in

order to prevent tilted probability that may bring about monopoly.

When selecting accounts with high influence, we use NR, the universal measure of value generated

from Nebulas. In the algorithm design of NR, we highlighted the liquidity and propagation of accounts

(see §2.1). We believe that the accounts featured with these properties have a high influence with regard

to the ecology construction. Thus, in the PoD, the accounts ranked Top N in the NR will be selected,

and after these accounts voluntarily pay a certain number of NASs as the deposit, they will be qualified

as the validator of new blocks to participate in bookkeeping.

After the validator set is provided, the PoD algorithm uses the pseudo-random number to determine

which one in the set is the new block proposer, which need to pack recent transactions to generate the

new block. The validator set is changeable. The eligible account can choose to join or quit the set.

Besides, the eligible accounts may vary with the periodical change of NR. Therefore, we designed the

dynamic validator set change mechanism in the PoD to implement the change of the validator set.

5.3.2 Dynamic Validators Set

The validator set changes the same way as a dynasty, so the set is divided into different dynasties, and

the validator set within a dynasty will not change. A dynasty cannot experience too rapid change, and

no change should be made within a period of time. Thus, we define every X blocks as an Epoch, and

in the same Epoch, no change takes place in the dynasty. Therefore, the change of dynasties will only

occur when one Epoch is handed over to another. At that time, the first block of the previous Epoch

will be investigated. If this block reaches the finality state, then the current Epoch will enter into the

next dynasty of D1; otherwise, the previous dynasty of D0 will remain; the process of which is shown in

34

Fig.13.

H H+1

non finality

H+99

Epoch X0, D0

…

G99G G1

H+100 H+101 H+199

Epoch X1, D0

…

G199G100 G101

H H+1

finality

H+99

Epoch X0, D0

…

G99G G1

H+100 H+101 H+199

Epoch X1, D1

…

G199G100 G101

Fig. 13: Change of validator dynasties (assuming X = 100)

Because of the network delay, the finality state of Block G at each node may not be the same when

any change of dynasties takes place. Therefore, by reference to dynamic Casper validator set strategies,

it is required that the consensus process of each dynasty will be completed jointly by the validator sets

of the current and previous dynasties. Therefore, in any dynasty, an eligible account can only apply for

joining or quiting the validator set of Dynasty D+2, and when the dynasty evolves into Dynasty D+2,

it can participate in the consensus process of the new block.

5.3.3 Consensus Process

After a new block is proposed, all the people in the validator set of the current dynasty will participate in

a round of BFT-Style (Byzantine-Fault-Tolerant Style) voting to determine the legitimacy of this block.

In the beginning of voting, each validator who participates in this block consensus will be charged 2x (x

is the incentive bonus proportion) as the deposit and then the two-stage voting process will be kicked

off.

• In the first stage, it is required that all validators vote Prepare tickets for the new block. After

voting the Prepare ticket, the validator will be rewarded 1.5x bonus. If the validators holding over

two-thirds of the total deposits in both current and previous dynasties vote Prepare tickets for

the new block, this block will enter into the second stage of voting. It should be noted that the

proposer of the new block votes the Prepare ticket for the new block by default.

• In the second stage, it is required that all validators vote Commit tickets for the new block. After

voting the Commit ticket, the validator will be rewarded 1.5x bonus again. If the validators holding

over two-thirds of the total deposits in both current and previous dynasties vote Commit tickets

for the new block, this block will reach the finality state.

In order to speed up the development of the entire ecology, if the difference between the timestamp

35

of Prepare ticket and Commit ticket in Block b and the timestamp of Block b exceeds T , then these

tickets will be considered expired and will be ignored directly.

5.3.4 Fork Choice

The PoD algorithm selects the canonical chain according to the block score at each height. It always

selects the block with the highest score to join the canonical chain, and the score of Block b at Height h

is as follows:

Score(b, h) =
∑

(b′,h′)∈children(b)

Score(b′, h′) +
∑

committed deposits in b (11)

Namely the sum of deposits corresponding to Commit tickets received by this block and all of its

descendant blocks, as shown in Fig.14.

B1

A1

G

B2

A2

B3

A3

B4

H H+1 H+2 H+3 H+4

committed

F1

committed

F2

committed

N1

committed

N2

committed

N3

committed

F3

committed

N4

A4

committed

F4

Score(b1, H+1) = N1+N2+N3+N4

Score(A1, H+1) = F1+F2+F3+F4

>

Fig. 14: Fork Choice Example

5.3.5 Slashing Conditions

To avoid any malicious damage to the consensus process, which may result in failure in the completion of

consensus process and obstruction of eco-development, PoD constrains consensus activities of validators

based on reference to Casper’s minimum slashing conditions [35].

Assume that Prepare vote and Commit vote in the consensus process have the following structures:

• Prepare(H, v, vs), where H is the hash value of the current block; v represents the height of the

current block; vs represents the height of a certain ancestral block of v.

• Commit(H, v), where H is the hash value of the current block; v represents the height of the current

block.

PoD algorithm defines the following 4 basic rules for the entire voting process:

36

• There is a strict order in the two-stage consensus process of a single block: Only when the total de-

posits of Prepare(H, v, vs) votes for the first stage reaches 2/3, can validators deliver Commit(H, v)

votes for the second stage.

• For multiple blocks, there is no mandatory rule that only when the consensus process of one

block is finished, may consensus process of the next block begin. Interwoven consensus is permitted

providing that it is conducted based on a certain order. Only after the first stage of process for height

vs is finished and the proportion of Prepare(H, vs, vs’) votes reaches 2/3, can Prepare(H, v, vs)

votes for its descendant blocks be delivered based on vs in order to ensure stable proceeding of the

interwoven consensus.

• To avoid the conduct of malicious cross-block voting of any node by taking advantage of the in-

terwoven consensus, it is required that after the delivery of Prepare (H, w, u) votes based on the

height of u, no Commit(H, v) vote can be delivered in all blocks with a height within the range

from u to w, thus guaranteeing high efficiency and orderliness of the consensus process.

• For the purpose of preventing nodes from staking with one deposit on multiple branches simultane-

ously, which may lead to the problem of “nothing-at-stake”, it is required that after Prepare(H1, v, vs1)

votes are delivered at a certain height, no different Prepare(H2, v, vs2) vote can be delivered again.

Once being reported and verified, any validators breaking the above rules will be punished and all

his/her deposit will be confiscated, in which 4% will be shared by whistleblowers as a reward and the

remaining part will be destroyed.

5.4 PoD Economic Analysis

5.4.1 Incentive Analysis

A validator participating in the PoD algorithm will be rewarded with 1x NAS on each legal block. In

case of failure in finishing the Prepare stage and entering into the Commit stage due to poor network

traffic or any cheating behavior, the validator will lose 0.5x NAS. Therefore, any validator becoming

value nodes will secure a large amount of earnings from accounting under good network traffic when not

engaging in any cheating behavior.

5.4.2 Cheating Analysis

Double-spend Attack

If it is assumed that a merchant confirms transaction and makes delivery when the new block reaches the

status of finality, then the minimum cost to be paid by a fraud for realizing zero-cost shopping through

completion of double-spend attack under the PoD consensus algorithm is described as follows:

Firstly, the fraud needs to increase his/her Nebulas Rank to Top N, become a validator by paying a

certain amount of NAS as deposit and apply for participation in validation of blocks in the D+2 dynasty.

37

Then, the fraud needs to be selected as the proposer of a new block by the pseudo-random algorithm.

At this moment, the fraud proposes two new blocks at the same height, of which one block has a hash

value of hash1 and contains a transferring transaction from the fraud to the merchant, while the other

block has a hash value of hash2 and contains a transferring transaction from the fraud to himself/herself.

Finally, in order to make both of hash1 and hash2 blocks reach finality, as shown in Fig.15, the fraud

has to spend 1/3 of the total deposits in this dynasty to bribe 1/3 of the validators and make them to

deliver Commit votes to both blocks.

2/3 committed

hash1

2/3 commited

hash2

merchant

1/3

rule breakers

Fig. 15: Financial Punishment on Double Spend

Therefore, in order to complete a successful double-spend attack, the fraud needs to spend a certain

amount of energy and financial resource to increase his/her Nebulas Rank (see §2.4 Resistance to Manip-

ulation) and then spend at least 1/3 of the total deposits in current dynasty to make both of the blocks

reach the finality status after he/she is luckily selected as a proposer.

51% attack

In PoW, launch of a 51% attack requires 51% of hashrate. In PoS, launch of a 51% attack requires 51%

of deposit. However, in PoD, launch of a 51% attack requires 51% of accounts in the validators set, which

means that a sufficient number of highly-reputed users need to rank at Top N in the Nebulas Rank and

payment of a corresponding amount of deposit is required, so it will be more difficult to launch a 51%

attack in PoD.

Short-range Attack

In PoD, blocks at each height have term of expiration time of consensus. Therefore, it is almost impossible

to complete a long-range attack in PoD, but it is still possible to launch short-range attacks within term

of expiration time.

When a short-range attacker (Attacker) attempts to forge A-chain to replace B-chain to become the

canonical fork when blocks at the height of H+1 are still within term of expiration time, Attacker needs to

ensure that score of block A1 is higher than that of block B1. Multiple voting will be severely punished,

so it will be unavoidable for Attacker to bribe validators; otherwise, it is impossible to complete a short-

range attack. For the purpose of presenting the safety of the PoD consensus algorithm, the costs to be

paid by Attacker in reverting different numbers of blocks are analyzed as follows.

38

If Attacker plans to revert B1, the minimum cost to be paid by Attacker is as described in Fig.16,

which is equivalent to a double-spend attack. If Attacker becomes the proposer of blocks at the height

of H+1, then he/she has to bribe 1/3 of the validators in Dynasty D0 and make them conduct multiple

voting in order to make A1 reach finality, for which the minimum cost is 1/3 of the total deposits.

B1

A1

G

H H+1

D0

D0

D0

finality 2/3 committed

B1

2/3 commited

A1

1/3

D0 slashed

D0

Fig. 16: Revert One Block by Short-range Attack

Assume that B1 and B2 have reached the status of finality and transactions in the blocks have

come into effect. If Attacker wants to revert B1-B2, the following two circumstances are taken into

consideration.

• The first circumstance is shown in Figure 17 (a): When Heights H+1 and H+2 are in the same

Epoch and dynasty, Attacker needs to bribe 1/3 of the validators in D0 in order to make A1 reach

finality. Meanwhile, these 1/3 of the validators will be punished and their deposits will be totally

confiscated. During validation of A2, sum of deposits equals to 2/3 of deposits in A1. At this

moment, if Attacker wants to secure the same amount of commit votes as B2, he/she has to bribe

all the remaining validators without cheating and lose at least 3/3 of the total deposits. Even if

Attacker succeeds in doing this, it is impossible to guarantee that score of A1 is higher than that

of B1 and Attacker will face a high risk of failure of attack.

• The second circumstance is shown in Figure 17 (b): When Heights H+1 and H+2 are in different

Epochs and different dynasties, Attacker needs to bribe 1/3 of the validators in D0 to make A1

reach finality and then bribe 1/3 of the validators in D1 to make A2 reach finality, so Attacker will

lose at least 2/3 of the total deposits in order to complete such an attack. To sum up, to launch a

short-range attack to cause invalidation of two blocks that have reached finality, Attacker needs to

pay at least 2/3 of the total deposits.

If Attacker wants to revert B1-B3, as shown in Figure 18, Attacker needs to firstly bribe 1/3 of the

validators in D0 in order to realize finality of A1 and then bribe 1/3 of the validators in D1 in order to

realize finality of A2. Finally, Attacker needs to bribe all of the remaining 2/3 of the validators in D1

in order to realize finality of A3. To sum up, 4/3 of the total amount of deposits will be lost. It will be

very difficult to prepare for these attacks. Even if an attacker manages to succeed in making necessary

39

B1

A1

G

B2

A2

H H+1 H+2

D0

D0

finality

2/3 committed

D1

finality

2/3 committed

D0

finality

2/3 committed

D1

finality

2/3 committed

B1

A1

G

B2

A2

H H+1 H+2

D0

D0

finality

2/3 committed

D0

finality

2/3 committed

D0

finality

2/3 committed

D0

finality

2/3 committed

(a) (b)

1/3 D0 slashed 2/3 D0 slashed 1/3 D0 slashed 1/3 D1 slashed

Fig. 17: Revert Two Blocks by Short-range Attack

preparations, he/she can’t guarantee that score of A1 is higher than that of B1. Therefore, it is possible

that such attack may fail.

B1

A1

G

B2

A2

H H+1 H+2

D0

D0

finality

2/3 committed

D1

finality

2/3 committed

D0

finality

2/3 committed

D1

finality

2/3 committed

B3

A3

H+3

D1

finality

2/3 committed

D1

finality

2/3 committed

1/3 D0 slashed 1/3 D1 slashed 2/3 D1 slashed

Fig. 18: Revert Three Blocks by Short-range Attack

If Attacker wants to revert B1-BN, in which N is limited by term of expiration time of consensus of

the block and thus can’t be a very large number. When N = 3, the total deposits of all validators in

the current dynasty will be totally confiscated. Therefore, when N >= 4, it is impossible to complete an

attack in order to make score of B1 higher than that of A1 and revert B1-BN. It is pointless to launch

such an attack.

40

6 Blockchain Search Engine

6.1 Introduction

As an increasing number of smart contracts are deployed by developers, searching needs for massive

smart contracts soar. Given that smart contracts are simply code and include no functional descriptions,

indexing smart contracts with search engine technologies imposes a high difficulty. To index smart

contracts properly, we use the following methods:

• Crawl webpage data relevant to smart contracts to set up mappings between the data and blockchain

smart contracts.

• Encourage developers to upload verified source code of smart contracts, analyze the functions and

semantics of the code, create indexes for the source code, and provide the searching function for

similar contracts. For smart contracts without source code, decompile them for their source code.

• Establish standards for smart contracts so that any contracts matching those standards can be

retrieved and found by users. Also, encourage developers to provide informational descriptions of

contracts during smart contract creation.

contract SearchableContract {

string public language;

string public author;

string public name;

string public title;

string public description;

string public tags;

}

6.2 Infrastructure

In current stage, We think that the centralized search engine is more suitable for obtaining the best

user experience and presenting the value of Nebulas Rank. The Nebulas development team is dedicated

to developing a searching service, retrieving all smart contracts in real time, performing multilingual

word breaking and creating full-text indexes to provide users with a user-friendly web interface. The

impartiality of the NR ranking algorithm and the verifiability of each node ensure the impartiality of

the centralized searching service, while the complete code of the searching backend is available to the

41

community. Also, third-party developers can create their own searching services on this basis. Fig.19

shows the architecture of the searching service.

Crawler

Storage (Data & Model)

Offline Services

Text Analyzer

Nebulas Rank Calculator

Tx Analyzer Contract Analyzer

Text Extractor Block Extractor

Ranking Model Trainer

Code Extractor

ElasticSearch Cluster

Query Analyzer

Word Breaker

Spell Checker

Filter

Query

Understanding

Scorer

Standard

Scorer

Ranking Model
Scorer

Indexer

Text Indexer

Tx Indexer

Contract

Indexer

Code Indexer

Searcher

Code

Searcher

API

Fig. 19: Architecture of the searching service

• Crawler data sources of the Crawler in blockchain search engine are classified into two types: one

for collecting block information and code of smart contracts from blockchains, while the other

for crawling data about smart contracts from public URLs including introductions, Dapp user

comments and news.

• Extractor consists of Text Extractor, Block Extractor and Code Extractor, which provide text

information, block information and code extraction service for smart contracts, respectively.

• Analyzer consists of Text Analyzer, Tx Analyzer and Contract Analyzer, which are text information,

block transaction information and smart contract analyzers, respectively. For the smart contract

analyzer, it provides contract decompilation, source code extraction, semantic analysis and so on.

• Nebulas Rank Calculator refers to the Nebulas Rank calculator service, which is used to calculate

the Nebulas Ranks of each non-contract and contract accounts offline.

• Ranking Model Trainer refers to the ranking model trainer service. Ranking rules take multiple

factors into account: matching field, text relevance, NR Rank value of the contract, transaction

42

quantity of the contract, frequency and depth, NR Rank of the user conducting a transaction with

the contract, and contract security. Based on users’ actual use conditions, the machine learning

algorithm (GBDT and artificial neural network (ANN) are optional) is used to train the ranking

and scoring model, which is also constantly improved according to user feedback. The trained

model is used by Scorer of the searching service.

• Query Analyzer refers to the keyword analysis service, which includes the multilingual word breaker

(Word Breaker) and the spell checker (Spell Checker).

• Indexer creates proper indexes from Analyzer and supports both full and incremental indexing.

• Scorer is classified into two levels: Level-1 Standard Scorer recalls candidate result sets from Elas-

ticSearch, which is done to recall as many candidate results as possible through the efficient and

effective ranking in the ElasticSearch cluster. Level-1 can recall several thousands of results. Level-2

Ranking Model Scorer uses the offline rank model to calculate and reorder the rank of each Level-1

candidate result set. For this level, the calculated results feature a sounding accuracy and can be

used directly by users.

• Searcher is responsible for communicating with the ElasticSearch cluster and packing and returning

the search result to the searching frontend.

• API provides external applications with comprehensive searching API services.

• ElasticSearch Cluster ES refers to the server cluster. The Nebulas development team plans to use

the open-source search engine ElasticSearch to support full-text indexing.

6.3 Nebulas Trends

The Nebulas creates the tendency list in combination with Nebulas Rank to provide user visual multi-

dimensional values in blockchains.

• Nebulas Rank list for non-contract accounts. It displays the daily NR list and the NR quick rise

and drop lists. Also, this rank list visualizes the rank variation tendency of each account and the

health change tendency of the entire network.

• Nebulas Rank list for contract accounts. Based on the NR values of non-contract accounts, the

Nebulas Rank list calculates the NR list of contract accounts, the quick rise and drop lists, the

variation tendency of each contract and the tendency chart for the quantity and use frequency of

smart contracts on the entire network. In addition, we will present other smart contract lists such

as the token contract list and the market contract estimation list to display a wider dimension of

information.

• Smart contract developer list. According to the contract account list, the list of smart contract

developers calculates the contribution list of contract developers and the contribution quick rise list

to display outstanding contracts developers and Dapps.

43

6.4 Keyword Query

By providing a keyword or describing the textual information about a smart contract such as its title,

author or function, users can find the matching contract from massive smart contracts. Currently,

mature and sophisticated algorithms and technologies are available for text searching. By using the

natural language processing and inverted index technologies, we can retrieve and sort efficiently in the

index database for massive smart contracts. This involves the following key technologies:

1. Topic-oriented distributed crawler technology

2. Multilingual word breaking technology: word breaking is relatively simple for western words. For

the word breaking of Chinese words, these algorithms are available: positive maximum matching,

negative maximum matching, shortest path word breaking and statistical word breaking.

3. Search term correction and semantic comprehension

4. Inverted index and distributed searching architecture

5. Ranking algorithm to sort the search results

Among these technologies, the ranking algorithm will be designed in combination with Nebulas Rank.

Specifically, we use intra-user transfers in the blockchain world as an analogy to webpage reference

relations in the Internet world to create the blockchain transaction graph. Then, calculate the NR rank

of non-contract accounts by using the NR ranking algorithm described in Section 2.3, calculate the ranks

of those contracts by using the contract ranking algorithm described in Section 4.2, and lastly use the

calculation result for search result sorting.

6.5 Searching for Similar Smart Contracts

For developers and certain users, they may want to search for smart contracts with similar functions

according to the code fragment of a contract. Being different from regular keyword searching, code

similarity has its particularity. To implement the searching function for similar smart contracts, we need

to use a certain algorithm to measure the code similarity in a number or percentage.

In today’s academia, code similarity algorithms are mainly categorized into the string edit distance,

token sequence similarity, abstract syntax tree similarity and program dependency graph similarity.

These algorithms describe the similarity in terms of code text, structure and syntax from different

dimensions. By combining these 4 major algorithms, we put forward 12 features of the code similarity of

Nebulas contracts, such as Skeleton Tree, Type Signature and Library Calls. For details, see Appendix

B.

Similar to search results of keywords, search results of smart contracts also use the same contract

ranking algorithm to sort final results.

44

7 Fundamental Services and Development Tools

7.1 Domain Name Service

Due to the anonymity of blockchains, account addresses are long and meaningless strings, which are not

user-friendly. For this reason, users are prone to misoperations like money loss caused by unintentional

funding or the interaction with incorrect objects. In other words, by using domain names that are easy

to remember, users can gain better experience. By using smart contracts, the Nebulas development

team will implement a DNS-like domain system named Nebulas Name Service (NNS) on the chain while

ensuring that it is unrestricted, free and open. Any third-party developers can implement their own

domain name resolution services independently or based on NNS.

For example, Alice applied for the domain name “alice.nns” for her account address

0xdf4d22611412132d3e9bd322f82e2940674ec1bc03b20e40. To transfer money to Alice, Bob simply needs

to enter “alice.nns” in payee information so that the money will be transferred to the correct payee

address through the NNS service.

NNS application rules are as follows:

• Top-level sub-domain names will be reserved and unavailable for application, such as *.nns, *.com,

*.org and *.edu. Thus, users can only apply for second-level sub-domain names.

• Once the NNS service is active, users can query domain names for availability. For a vacant domain

name, users can bid for it through a smart contract. The bidding process is open so that any user

can query for others’ bids and update their own bids anytime.

• Once the bidding period expires, the highest bidder wins the domain name and the smart contract

locks the user’s bidding funds. The validity period of the domain name is one year. One year later,

the user can freely determine whether to renew or not. If yes, the validity period will be extended

for another year. If no, the bidding funds will be refunded to the user’s account and the domain

name will be released as available again.

• Users can give up the ownership of a domain name at any time. In this case, the bidding funds will

be automatically refunded to the user’s account and the domain name will be released as available

again after domain data is cleared.

• Users can transfer the ownership of a domain name with or without compensation. Nebulas does

not intervene in any transactions of domain names.

7.2 Lightning Network

Currently, all public blockchain networks are faced with system scalability challenges. For example,

Bitcoin network is only able to process 7 transactions per second and Ethereum is able to process 15

transactions per second. By introducing PoS-like consensus algorithms, mining calculation can be avoided

45

and the consensus speed can be improved dramatically. However, public blockchains are still greatly

challenged by massive micro-payment scenarios in the real world. Put forward in February 2015, the

lightning network [47] was designed to set up a channel network for micro-payment between transaction

parties, so that large amounts of payments between the parties can be confirmed off the blockchain

directly, repeatedly, frequently and bi-directionally in the netting method. When a transaction needs to

be settled, the final result will be submitted to the blockchains for confirmation. Theoretically, this can

achieve millions of transfers per second. If no point-to-point payment channel is available between the

parties, a payment path connecting both parties and consisting of multiple payment channels can also

be used to achieve reliable fund transfer between the parties. The lightning network has gone through

the PoC phase on both Bitcoin and Ethereum.

Nebulas implements the lightning network as the infrastructure of blockchains and offers flexible

design. Any third-party developers can use the basic service of lightning network to develop applications

for frequent transaction scenarios on Nebulas. In addition, Nebulas will launch the world’s first wallet

app that supports the lightning network.

7.3 Developer Tools

A complete set of developer tools are critical to blockchain app developers. So far, developer tool

chains for pubic blockchains are incomplete, imposing great challenges to most developers. Nebulas

development team will provide a rich set of developer tools, including independent development IDE for

smart contracts, block browser, plugins for various popular IDEs (including Eclipse, JetBrains, Visual

Studio, Sublime Text, VIM and Atom), debugger, simulator, formal verification tool for smart contracts,

background SDKs for various advanced languages, and SDKs for mobile ends.

46

8 Nebulas Token NAS

The Nebulas network has its own built-in token, NAS. NAS plays two roles in the network. First, as the

original money in the network, NAS provides asset liquidity among users, and functions as the incentive

token for PoD bookkeepers and DIP. Second, NAS will be charged as the calculation fee for running

smart contracts. The minimum unit of NAS is 10−18 NAS.

Originally, NAS was sold as ERC20 token on the Ethereum platform, with the maximum NAS ag-

gregate of X = 108. The issuance modes are as follows:

1. Community Construction: Under the direction of the Nebulas sponsor team, 80%X tokens will

be used for Nebulas community construction, including ecological incubation and incentive of the

Nebulas community blockchain app (DApp), construction of developer community, business and

industrial cooperation, marketing and promotion, academic research, educational investment, laws

and regulations, and investment in communities and organizations. Specifically, 5%X will be sold

to community impact investors, 5%X as Nebulas community development fund and 70%X for

reservation.

2. Sponsor and Development Team Incentives: Throughout the development of Nebulas, the spon-

sor and development teams will continuously make human and material resource contributions in

aspects of project organizational structure, technology research and development and ecological

operation. As for token allocation, 20%X is reserved for team incentive purpose. This part of NAS

is initially locked and will be unlocked one year after the completion of the first NAS sale to the

community, and gradually distributed to the sponsor and development teams in three years

After the official launch of Nebulas network, any users with Ethereum ERC20 NAS tokens can claim

equivalent NAS of Nebulas network using related credential, and the Ethereum ERC20 NAS tokens will

be reclaimed. With the evolution of Nebulas network, NAS will grow in the following way:

1. PoD incentive: 3%X incentive NAS per year for bookkeepers;

2. DIP incentive: 1%X incentive NAS per year for outstanding smart contract developers.

47

9 Conclusion

What We Hold

From a highly abstract perspective, blockchain is the right confirmation of data in a decentralized way,

and tokens function as the carrier of right confirmation value. The Internet solves the communication of

data, while blockchain further solves the right confirmation of data. For the first time ever, blockchain

translates public data into private data which will no longer be analyzed and utilized arbitrarily by large

enterprises such as Google, Amazon and Facebook.

The essence of blockchain represented by public blockchain is “Community + Token + Application”.

Community is essentially a from-bottom-to-top ecosystem adhering to the idea of openness, open source,

sharing and non-profitability, which is completely different from existing from-top-to-bottom business

ecosystems. Token is the carrier of right confirmation value. There will be more scenarios in the future

than those used only for attributes of virtual currency and electronic cash. Application simply refer to

the technological implementation of blockchain application scenarios. Without the combination with the

aforementioned two factors, application alone cannot fully reflect the charm of blockchain systems.

The blockchain system represented by public blockchain is the future of blockchain, as its “trustless”

and “permissionless” attributes are the actual value of blockchain systems. On the contrary, most con-

sortium blockchain/enterprise blockchain are “trust-based” and “permission-based”, which means they

cannot break existing patterns and are considered as improved innovations. While public blockchain

systems overturn existing cooperation relations and are considered disruptive innovations, reflecting the

maximum value of blockchain.

What We Are Committed To

Be as the first blockchain search engine around the world, Nebulas is committed to exploring hidden

dimensions of blockchain value and building value-based blockchain operating systems, search engines

and other related extensive apps.

With this commitment, we put forward Nebulas Rank to set up the measure of value of the blockchain

world, design Nebulas Force to empower the self-evolving of blockchains, develop Developer Incentive

Protocol and Proof of Devotion to motivate the upgrade of blockchain value, and construct Nebulas

Search Engine to help users explore other dimensions of blockchain value.

What We Believe

The ongoing scientific and technological evolving will lead us to a better life with a higher level of freedom

and equality. As one of the major technologies, blockchain will gradually give full play to its advantages.

Being part of this evolving is our greatest happiness and accomplishment.

Similar to the Internet, blockchains will also enter a phase of explosive users/apps. Blockchain

48

technology will become the base protocol of the next-generation “smart network”, and the number of

users will reach or even go beyond one billion in the next 5 to 10 years. Significant opportunities and

challenges will both emerge in the next five years.

Facing the tremendous ecosystem in the future, ask not what blockchain can do for you, ask what

you can do for blockchain. Because blockchain is an organism and economy. We are glad to share these

with all of you in the exploration of blockchain technologies.

49

References

[1] Luke Anderson et al. “New kids on the block: an analysis of modern blockchains.” In: (2016).

arXiv: 1606.06530. url: http://arxiv.org/abs/1606.06530.

[2] Annika Baumann, Benjamin Fabian, and Matthias Lischke. “Exploring the Bitcoin net-

work.” In: WEBIST 2014 - Proceedings of the 10th International Conference on Web In-

formation Systems and Technologies 1 (2014), pp. 369–374. issn: 9789897580239 (ISBN).

doi: 10.5220/0004937303690374. url: https://www.engineeringvillage.com/blog/

document.url?mid=cpx%7B%5C_%7D9ce5505146fd48dcbdM557010178163125%7B%5C&

%7Ddatabase=cpx.

[3] Morten L Bech and Enghin Atalay. “The topology of the Federal Funds markets.” In:

Economic Policy Review 14.2 (2008).

[4] Phillip Bonacich. “Factoring and weighting approaches to status scores and clique identifi-

cation.” In: Journal of Mathematical Sociology 2.1 (1972), pp. 113–120.

[5] Stephen P. Borgatti. “Centrality and network flow.” In: Social Networks 27.1 (2005), pp. 55–

71. issn: 03788733. doi: 10.1016/j.socnet.2004.11.008.

[6] Stephen P. Borgatti and Martin G. Everett. “A Graph-theoretic perspective on centrality.”

In: Social Networks 28.4 (2006), pp. 466–484. issn: 03788733. doi: 10.1016/j.socnet.

2005.11.005.

[7] Michael Boss, Martin Summer, and Stefan Thurner. “Contagion Flow Through Bank-

ing Networks.” In: Lecture Notes in Computer Science 3038 (2004), pp. 1070–1077. issn:

03029743. doi: 10.1016/j.jfi.2008.06.003. arXiv: 0403167v1 [arXiv:cond-mat].

[8] Michael Boss et al. “The Network Topology of the Interbank Market.” In: Quantitative

Finance 4.6 (2004), pp. 677–684. issn: 1469-7688. doi: 10 . 1080 / 14697680400020325.

arXiv: 0309582 [cond-mat]. url: http://arxiv.org/abs/cond-mat/0309582.

[9] Sergey Brin and Lawrence Page. “Reprint of: The anatomy of a large-scale hypertextual

web search engine.” In: Computer Networks 56.18 (2012), pp. 3825–3833. issn: 13891286.

doi: 10.1016/j.comnet.2012.10.007. arXiv: 1111.6189v1.

[10] Vitalik Buterin. “Ethereum: A next-generation smart contract and decentralized applica-

tion platform.” In: URL https://github. com/ethereum/wiki/wiki/% 5BEnglish% 5D-White-

Paper (2014).

[11] Vitalik Buterin et al. Ethereum white paper. 2013.

50

http://arxiv.org/abs/1606.06530
http://arxiv.org/abs/1606.06530
https://doi.org/10.5220/0004937303690374
https://www.engineeringvillage.com/blog/document.url?mid=cpx%7B%5C_%7D9ce5505146fd48dcbdM557010178163125%7B%5C&%7Ddatabase=cpx
https://www.engineeringvillage.com/blog/document.url?mid=cpx%7B%5C_%7D9ce5505146fd48dcbdM557010178163125%7B%5C&%7Ddatabase=cpx
https://www.engineeringvillage.com/blog/document.url?mid=cpx%7B%5C_%7D9ce5505146fd48dcbdM557010178163125%7B%5C&%7Ddatabase=cpx
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.1016/j.socnet.2005.11.005
https://doi.org/10.1016/j.socnet.2005.11.005
https://doi.org/10.1016/j.jfi.2008.06.003
http://arxiv.org/abs/0403167v1
https://doi.org/10.1080/14697680400020325
http://arxiv.org/abs/0309582
http://arxiv.org/abs/cond-mat/0309582
https://doi.org/10.1016/j.comnet.2012.10.007
http://arxiv.org/abs/1111.6189v1

[12] Lijun Chang et al. “pSCAN: Fast and Exact Structural Graph Clustering.” In: IEEE Trans-

actions on Knowledge and Data Engineering 29.2 (2017), pp. 387–401.

[13] Tao Hung Chang and Davor Svetinovic. “Data Analysis of Digital Currency Networks:

Namecoin Case Study.” In: Proceedings of the IEEE International Conference on Engineer-

ing of Complex Computer Systems, ICECCS (2017), pp. 122–125. doi: 10.1109/ICECCS.

2016.023.

[14] Duan Bing Chen et al. “Identifying influential nodes in large-scale directed networks: The

role of clustering.” In: PLoS ONE 8.10 (2013), pp. 1–10. issn: 19326203. doi: 10.1371/

journal.pone.0077455.

[15] Michel Chilowicz, Etienne Duris, and Gilles Roussel. “Syntax tree fingerprinting for source

code similarity detection.” In: Program Comprehension, 2009. ICPC’09. IEEE 17th Inter-

national Conference on. IEEE. 2009, pp. 243–247.

[16] Etherscan - The Ethereum Block Explorer. https://etherscan.io/. Accessed: 2017-08-01.

[17] Giorgio Fagiolo. “The International-Trade Network: Gravity Equations and Topological

Properties.” In: (2009). arXiv: 0908.2086. url: http://arxiv.org/abs/0908.2086.

[18] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. “The program dependence graph

and its use in optimization.” In: ACM Transactions on Programming Languages and Systems

(TOPLAS) 9.3 (1987), pp. 319–349.

[19] Danno Ferrin. “A Preliminary Field Guide for Bitcoin Transaction Patterns.” In: Texas

Bitcoin Conference (2015). url: http://texasbitcoinconference.com.

[20] Michael Fleder, Michael S. Kester, and Sudeep Pillai. “Bitcoin Transaction Graph Analysis.”

In: … -Transaction-Graph-Analysis. Pdf”… (2015), pp. 1–8. arXiv: 1502.01657. url: http:

//arxiv.org/abs/1502.0165%7B%5C%%7D5Cnhttp://people.csail.mit.edu/spillai/

data/papers/bitcoin-project-paper.pdf%7B%5C%%7D5Cnhttp://arxiv.org/abs/

1502.00165%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.01657.

[21] L Freeman. “A set of measures of centrality: I. Conceptual clarification.” In: Soc. Networks

1 (1979), pp. 215–239.

[22] Linton C Freeman. “A set of measures of centrality based on betweenness.” In: Sociometry

(1977), pp. 35–41.

[23] Linton C Freeman. “Centrality in social networks conceptual clarification.” In: Social net-

works 1.3 (1978), pp. 215–239.

51

https://doi.org/10.1109/ICECCS.2016.023
https://doi.org/10.1109/ICECCS.2016.023
https://doi.org/10.1371/journal.pone.0077455
https://doi.org/10.1371/journal.pone.0077455
https://etherscan.io/
http://arxiv.org/abs/0908.2086
http://arxiv.org/abs/0908.2086
http://texasbitcoinconference.com
http://arxiv.org/abs/1502.01657
http://arxiv.org/abs/1502.0165%7B%5C%%7D5Cnhttp://people.csail.mit.edu/spillai/data/papers/bitcoin-project-paper.pdf%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.00165%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.01657
http://arxiv.org/abs/1502.0165%7B%5C%%7D5Cnhttp://people.csail.mit.edu/spillai/data/papers/bitcoin-project-paper.pdf%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.00165%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.01657
http://arxiv.org/abs/1502.0165%7B%5C%%7D5Cnhttp://people.csail.mit.edu/spillai/data/papers/bitcoin-project-paper.pdf%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.00165%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.01657
http://arxiv.org/abs/1502.0165%7B%5C%%7D5Cnhttp://people.csail.mit.edu/spillai/data/papers/bitcoin-project-paper.pdf%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.00165%7B%5C%%7D5Cnhttp://arxiv.org/abs/1502.01657

[24] Linton C Freeman, Stephen P Borgatti, and Douglas R White. “Centrality in valued graphs:

A measure of betweenness based on network flow.” In: Social networks 13.2 (1991), pp. 141–

154.

[25] Sudipto Guha et al. “Approximate XML joins.” In: Proceedings of the 2002 ACM SIGMOD

international conference on Management of data. ACM. 2002, pp. 287–298.

[26] Bernhard Haslhofer, Roman Karl, and Erwin Filtz. “O Bitcoin Where Art Thou? Insight

into Large-Scale Transaction Graphs.” In: ().

[27] Leo Katz. “A new status index derived from sociometric analysis.” In: Psychometrika 18.1

(1953), pp. 39–43.

[28] S King and S Nadal. “Peercoin–Secure & Sustainable Cryptocoin.” In: Aug-2012 [Online].

Available: https://peercoin.net/whitepaper ().

[29] Jon M Kleinberg. “Authoritative sources in a hyperlinked environment.” In: Journal of the

ACM (JACM) 46.5 (1999), pp. 604–632.

[30] Lothar Krempel. “Exploring the Dynamics of International Trade by Combining the.” In:

December (2002), pp. 1–22.

[31] Qian Li et al. “Identifying influential spreaders by weighted LeaderRank.” In: Physica A:

Statistical Mechanics and its Applications 404 (2014), pp. 47–55. issn: 03784371. doi: 10.

1016/j.physa.2014.02.041. arXiv: arXiv:1306.5042v1.

[32] l lvm. https://llvm.org/. Accessed: 2017-08-01.

[33] Linyuan Lü et al. “Vital nodes identification in complex networks.” In: Physics Reports

650 (2016), pp. 1–63. issn: 03701573. doi: 10.1016/j.physrep.2016.06.007. arXiv:

1607.01134.

[34] Sarah Meiklejohn et al. “A fistful of Bitcoins: Characterizing payments among men with

no names.” In: Proceedings of the Internet Measurement Conference - IMC ’13 6 (2013),

pp. 127–140. issn: 15577317. doi: 10.1145/2504730.2504747. url: http://dl.acm.org/

citation.cfm?id=2504730.2504747.

[35] Minimal Slashing Conditions. https://medium.com/@VitalikButerin/minimal-slashing-

conditions-20f0b500fc6c. Accessed: 2017-08-01.

[36] L Morten, J Robert, and E Walter. “The topology of interbank payment flows.” In: (2006).

[37] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.” In: Www.Bitcoin.Org

(2008), p. 9. issn: 09254560. doi: 10.1007/s10838-008-9062-0. arXiv: 43543534534v343453.

url: https://bitcoin.org/bitcoin.pdf.

52

https://doi.org/10.1016/j.physa.2014.02.041
https://doi.org/10.1016/j.physa.2014.02.041
http://arxiv.org/abs/arXiv:1306.5042v1
https://llvm.org/
https://doi.org/10.1016/j.physrep.2016.06.007
http://arxiv.org/abs/1607.01134
https://doi.org/10.1145/2504730.2504747
http://dl.acm.org/citation.cfm?id=2504730.2504747
http://dl.acm.org/citation.cfm?id=2504730.2504747
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://doi.org/10.1007/s10838-008-9062-0
http://arxiv.org/abs/43543534534v343453
https://bitcoin.org/bitcoin.pdf

[38] NEM Technical Reference. http://nem.io/NEM_techRef.pdf. Accessed: 2017-08-01.

[39] Mark Newman. Networks: an introduction. Oxford university press, 2010.

[40] Mark EJ Newman. “A measure of betweenness centrality based on random walks.” In: Social

networks 27.1 (2005), pp. 39–54.

[41] Dá Niel Kondor et al. “Do the Rich Get Richer? An Empirical Analysis of the Bitcoin

Transaction Network.” In: PLoS ONE 9.2 (2014). doi: 10.1371/journal.pone.0086197.

[42] Athanasios N. Nikolakopoulos and John D. Garofalakis. “NCDawareRank.” In: Proceedings

of the sixth ACM international conference on Web search and data mining - WSDM ’13

February 2013 (2013), p. 143. doi: 10.1145/2433396.2433415. url: http://dl.acm.

org/citation.cfm?doid=2433396.2433415.

[43] Jae Dong Noh and Heiko Rieger. “Random walks on complex networks.” In: Physical review

letters 92.11 (2004), p. 118701.

[44] Micha Ober, Stefan Katzenbeisser, and Kay Hamacher. “Structure and Anonymity of the

Bitcoin Transaction Graph.” In: Future Internet 5.2 (2013), pp. 237–250. issn: 1999-5903.

doi: 10.3390/fi5020237. url: http://www.mdpi.com/1999-5903/5/2/237/.

[45] Lawrence Page et al. The PageRank citation ranking: Bringing order to the web. Tech. rep.

Stanford InfoLab, 1999.

[46] Thai Pham and Steven Lee. “Anomaly detection in bitcoin network using unsupervised

learning methods.” In: arXiv preprint arXiv:1611.03941 (2016).

[47] Joseph Poon and Thaddeus Dryja. “The bitcoin lightning network: Scalable off-chain in-

stant payments.” In: Technical Report (draft) (2015).

[48] Marc Pröpper, Iman van Lelyveld, and Ronald Heijmans. “Towards a network description

of interbank payment flows.” In: (2008).

[49] Dorit Ron and Adi Shamir. “Quantitative Analysis of the Full Bitcoin Transaction Graph.”

In: ().

[50] Gert Sabidussi. “The centrality index of a graph.” In: Psychometrika 31.4 (1966), pp. 581–

603.

[51] Computer Science and The Technion. “The Stochastic Approach for Link-Structure Anal-

ysis (SALSA) and the TKC E ect.” In: (2001).

53

http://nem.io/NEM_techRef.pdf
https://doi.org/10.1371/journal.pone.0086197
https://doi.org/10.1145/2433396.2433415
http://dl.acm.org/citation.cfm?doid=2433396.2433415
http://dl.acm.org/citation.cfm?doid=2433396.2433415
https://doi.org/10.3390/fi5020237
http://www.mdpi.com/1999-5903/5/2/237/

[52] M. Ángeles Serrano, Marián Boguñá, and Alessandro Vespignani. “Patterns of dominant

flows in the world trade web.” In: Journal of Economic Interaction and Coordination 2.2

(2007), pp. 111–124. issn: 1860711X. doi: 10.1007/s11403-007-0026-y. arXiv: 0704.

1225.

[53] Ma Angeles Serrano and Marián Boguñá. “Topology of the world trade web.” In: Physical

review. E, Statistical, nonlinear, and soft matter physics 68.1 Pt 2 (2003), p. 015101. issn:

1063-651X. doi: 10.1103/PhysRevE.68.015101. arXiv: 0301015 [cond-mat].

[54] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. “SCAN++: efficient algorithm

for finding clusters, hubs and outliers on large-scale graphs.” In: Proceedings of the VLDB

Endowment 8.11 (2015), pp. 1178–1189.

[55] The Stage 1 Casper Contract. https://github.com/ethereum/casper/. Accessed: 2017-

08-01.

[56] Florian Tschorsch and Björn Scheuermann. “Bitcoin and Beyond : A Technical Survey on

Decentralized Digital Currencies.” In: IEEE COMMUNICATIONS SURVEYS & TUTO-

RIALS PP.99 (2015), pp. 1–1. issn: 1553-877X. doi: doi:10.1109/COMST.2016.2535718.

[57] Xiaowei Xu et al. “Scan: a structural clustering algorithm for networks.” In: Proceedings of

the 13th ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM. 2007, pp. 824–833.

[58] Kaizhong Zhang and Dennis Shasha. “Simple fast algorithms for the editing distance be-

tween trees and related problems.” In: SIAM journal on computing 18.6 (1989), pp. 1245–

1262.

54

https://doi.org/10.1007/s11403-007-0026-y
http://arxiv.org/abs/0704.1225
http://arxiv.org/abs/0704.1225
https://doi.org/10.1103/PhysRevE.68.015101
http://arxiv.org/abs/0301015
https://github.com/ethereum/casper/
https://doi.org/doi: 10.1109/COMST.2016.2535718

Appendix A Nebulas Account Address Design

We carefully design the Nebulas account address to start with “n”, which is short for “Nebulas”.

A.1 Account Address

Similar to Bitcoin and Ethereum, Nebulas also adopts an elliptic curve algorithm as its basic encryption

algorithm for Nebulas accounts. The address is derived from the public key, which is in turn derived

from the private key that is encrypted with the user’s passphrase.

Also we have the checksum design aiming to prevent a user from accidentally sending NAS to a wrong

user account due to entry of several incorrect characters. The specific calculation method is provided as

follows:

content = ripemd160(sha3_256(public key))

checksum = sha3_256(0x19<<(21*8) + 0x57<<(20*8) + content)[0:4]

address = base58(0x19<<(25*8) + 0x57<<(24*8) + content<<(4*8) + checksum)

in which 0x19 is for padding, and 0x57 specifies the type of address. Notice that the length of content

is 20 bytes, the length of checksum is 4 bytes, and the length of address is 26 bytes.

A Nebulas address contains a total of 35 characters including the prefix “n”, which is encoded with

base58. A typical address looks like this n1TV3sU6jyzR4rJ1D7jCAmtVGSntJagXZHC.

A.2 Smart Contract Address

Calculating the smart contract address differs from account slightly. The passphrase of the contract

sender is not required. Instead, we need the sender’s address and the nonce. The calculation formula is

as follows:

content = ripemd160(sha3_256(tx.from, tx.nonce))

checksum = sha3_256(0x19<<(21*8) + 0x58<<(20*8) + content)[0:4]

address = base58(0x19<<(25*8) + 0x58<<(24*8) + content<<(4*8) + checksum)

in which 0x58 indicates the address type for smart contract. A typical smart contract address looks like

n1sLnoc7j57YfzAVP8tJ3yK5a2i56QrTDdK.

55

Appendix B Search for Similar Smart Contracts

The difficulty in code similarity lies in structural features of high-level language and diversity in the

forms of logical expression of smart contracts. At present, there are various schools of code similarity

algorithm in the academic circles, which are generally described as follows:

• Edit Distance between Character Strings

Both of the entered query code and candidate source code are deemed as texts. Edit distance

between two character strings is used for measuring similarity between them. Edit Distance refers

to the minimum number of editing operations required for converting one character string into

the other character string. Permitted editing operations include replacement of one character with

another character, i.e. insertion of a character and deletion of a character. Generally speaking, the

shorter the edit distance, the higher the similarity between two character strings. This algorithm

based on edit distance between character strings can be used not only for source code comparison

but also in intermediate representation or even machine language. For the purpose of improving

the robustness of the algorithm based on edit distance between character strings, a certain degree

of conversion of the source code without any semantic change will be conducted, such as removal

of blank character, removal of annotation, replacement of names of all local variables with ‘$’,

normalized expression of algebraic expression, etc. This algorithm is characterized by fast speed,

conciseness and high efficiency. However, its adaptability to complex programs is relatively poor

and doesn’t take syntax and organizational structure of code into consideration.

• Token Sequence

Token sequence representation method refers to the conversion of the entered source code into a

Token sequence through the analysis by a lexical analyzer. Similarity between two programs is

similarity between two Token sequences, so the longest common substring or correlation matching

algorithm (suffix tree matching algorithm) may be used to measure the degree of similarity between

two programs, through which code segments with different syntaxes but similar functions can be

detected. However, this method conceals organizational structure of programs when measuring the

similarity between two programs.

• Abstract Syntax Tree (AST)

AST is an intermediate expression form after syntactic analysis on a source code is conducted,

based on which the similarity between two programs can be measured through comparison between

one subtree and another subtree. For measurement of the similarity between two trees, the tree

edit distance algorithm [58] may be used. The accurate tree edit distance algorithm is relatively

complex and Literature [25] provides an approximate fast algorithm. According to Literature [15],

syntax tree should be subject to Hash fingerprint in order to enable the syntax tree comparison

algorithm to conduct high-efficiency searching on massive datasets.

• Program Dependency Graph (PDG)

56

PDG [18] can represent internal data and control dependency relationship of a program and analyze

program code at the semantic level. Similar code protocol becomes search of isomorphic subgraphs,

which is the NP-complete problem and requires a very complex algorithm, so only some approximate

algorithms are available currently.

We believe that the abovementioned algorithms describe similarity between codes in text, structure

and syntax at different dimensions. Source Forager [27] provides a great engineering thought: Indexes

of similarity at various dimensions are depicted as different features, each of which represents code

similarity measurement from a specific aspect. Finally, vector similarity is used to conduct overall

similarity measurement. This method integrates the advantages of the abovementioned algorithms. This

thought is also used by Nebulas for reference in realizing search of similarity among smart contracts. We

deem function as the fundamental unit of code search among smart contracts.

Table 3 defines the candidate code similarity features. Next, we are going to describe definition of

each feature and the function for calculating their similarity:

Table 3: Code Similarity Feature Family Table

Feature-Class Brief Description

Type–Operation Coupling types used and operations performed on the types

Skeleton Tree structure of loops and conditionals

Decorated Skeleton Tree structure of loops, conditionals, and operations

3 Graph CFG BFS CFG subgraphs of size 3, BFS used for generating subgraphs

4 Graph CFG BFS CFG subgraphs of size 4, BFS used for generating subgraphs

3 Graph CFG DFS CFG subgraphs of size 3, DFS used for generating subgraphs

4 Graph CFG DFS CFG subgraphs of size 4, DFS used for generating subgraphs

Library Calls calls made to libraries

Type Signature input types and the return type

Local Types types of local variables

Numeric Literals numeric data constants used

String Literals string data constants used

• Type–Operation Coupling

This feature is a two-tuple set. Two tuples contain type of variable and operator of type of variable,

namely the (type, operation) pair. Generally, primitive data type should be paired with arithmetic

operator, logical operator and relational operator, such as (int,≥); custom data type (such as

struct) should be paired with member function, such as (Bar, .foo), indicating that field “foo” of

data type “Bar” is accessed. Based on this method, all operations on variables in the code body of

57

a function can be changed into two-tuples. After repetition removal, A two-tuple sequence is used

to reflect the Type–Operation Coupling feature of this code segment. We believe that codes with

similar functions should have similar variable operation sets. However, we are not concerned with

the order of the two tuples, so this feature loses the logical structure information of code and thus

can only represent feature of code partially.

Similarity among Type–Operation Coupling features can be defined by Jacobian similarity, namely

that if two sets S1 and S2 are given, Jacobian similarity can be defined with the following formula:

simJacc(S1,S2) =
| S1

∩
S2 |

| S1

∪
S2 |

(12)

• Skeleton Tree

Code-based abstract syntax tree. However, only loop (for, while, do...while) and conditional state-

ment (if...else) are reserved, and all the other nodes are removed from the tree. We believe that

codes with similar functions should be similar in structure of loop and conditional statement.

Similarity calculation for skeleton tree is based on edit distance between two trees. dr is defined as

the estimated edit distance between two trees and is only determined by size of tree, namely that:

dr(T1, T2) =
| size(T1)− size(T2) |
max(size(T1), size(T2))

(13)

DT is assumed as the threshold value of edit distance and set as 0.5. We can further acquire the

formula for calculation of approximate edit distance between two trees:

dt(T1, T2) =



dr(T1, T2) if dr(T1, T2) ≥ DT

max


ed(pre(T1), pre(T2)),

ed(post(T1), post(T2))


max(size(T1),size(T2))

otherwise

(14)

pre(T) represents preorder traversal sequence of tree; post(T) represents postorder traversal se-

quence of tree; ed(S1, S2) represents edit distance between S1 and S2. Similarity between two

skeleton trees can be calculated with the following formula:

simTree(T1, T2) = 1− dt(T1, T2) (15)

• Decorated Skeleton Tree

Decorated Skeleton Tree is similar to Skeleton Tree. In addition to loop and branch node, most

operators (such as +, -, <) are reserved. However, assignment operators are removed because most

of these operators are noises.

• K-Subgraphs of CFG

Realized based on k-subgraph of CFG of a function. k-subgraph should be defined with the following

58

method: A CFG and a specific node should be given, based on which we should conduct breadth-

first search (BFS) or depth-first search (DFS) until number of traversed nodes reaches k, when the

formed subgraph should be k-subgraph. If number of nodes fails to reach k after finish of traversal,

such subgraph should be discarded. Through traversal of each node of CFG, we can acquire all

k-subgraphs. For each k-subgraph, k2 bit integer is used to express it. Refer to Figure 20. All

k-subgraphs form one integer set.

3 Graph CFG BFS: k = 3, BFS Traversal

4 Graph CFG BFS: k = 4, BFS Traversal

3 Graph CFG DFS: k = 3, DFS Traversal

4 Graph CFG DFS: k = 4, DFS Traversal

Similarity can be calculated with generalized Jacobian similarity formula: Vectors x⃗ = (x1, x2, ...xn)

and y⃗ = (y1, y2, ...yn) are given, based on which generalized Jacobian similarity can be defined as:

J(x⃗, y⃗) =

∑
i min(xi, yi)∑
i max(xi, yi)

(16)

Fig. 20: 4-graph example: Element of adjacency matrix is a binary string “0100 0011 0000 0000”, for which

the decimal number is 17152

• Library Calls

If call of any contract from any other library occurs in the contract, addresses of all library contracts

will be recorded. Similarity among them will be calculated with Jacobian similarity formula.

• Type Signature

This feature is composed of input parameter type and return parameter type, and similarity be-

tween them can be calculated with Jacobian similarity formula. For example, for the following smart

contract code, feature of Type Signature of function “getBalance” is vector (address, uint256).

contract addressTest {

function getBalance(address addr) returns (uint) {

return addr.balance;

}

}

59

• Local Types: This feature is the set of all types of local variables of the function body, for which

similarity should be calculated with Jacobian similarity formula.

• Numeric Literals: The set of all numeric constants serves as the feature of Numeric Literals, for

which similarity should be calculated with Jacobian similarity formula.

• String Literals: The set of all string constants serves as the feature of String Literals, for which

similarity should be calculated with Jacobian similarity formula.

Feature family can be expanded, so it is convenient to add new features to it. Based on the circum-

stance that there is a similarity calculation for each feature, we calculate the weighted sum of all features

and thus can acquire the final code similarity:

simcombined(A⃗, B⃗) =

∑ncl
c=1 simc(A⃗c, B⃗c) · wc∑ncl

c=1 wc
(17)

Therein, A⃗ and B⃗ are eigenvectors; ncl is number of features in the feature family; simc is similarity

calculation function specific to feature c; A⃗c and B⃗c are eigenvectors of feature c; wc is weight of c.

Weight can be acquired through machine learning algorithm training based on a large number of test

sets.

60

	Introduction
	Blockchain technology introduction
	Business and technology challenges
	Nebulas design principles

	Nebulas Rank
	Overview of Nebulas Rank
	Transaction Graph
	Ranking Algorithm
	Manipulation Resistance
	Related Works

	Nebulas Force
	Nebulas Virtual Machine (NVM)
	Upgrade Design of the Protocol Code
	Block Structure
	Upgrade of the Protocol Code

	Upgrade Design of the Smart Contract
	Turing Complete Smart Contract Programming Language
	Upgradable Contracts

	Developer Incentive Protocol (DIP)
	Design Goals
	DIP Reward Distribution Algorithm
	Experimental Results
	Cheating Analysis

	Proof of Devotion (PoD) Consensus Algorithm
	Design Goals
	Defects of Commonly Used Consensus Algorithms
	Design of the PoD Algorithm
	Generation of New Blocks
	Dynamic Validators Set
	Consensus Process
	Fork Choice
	Slashing Conditions

	PoD Economic Analysis
	Incentive Analysis
	Cheating Analysis

	Blockchain Search Engine
	Introduction
	Infrastructure
	Nebulas Trends
	Keyword Query
	Searching for Similar Smart Contracts

	Fundamental Services and Development Tools
	Domain Name Service
	Lightning Network
	Developer Tools

	Nebulas Token NAS
	Conclusion
	Appendix Nebulas Account Address Design
	Account Address
	Smart Contract Address

	Appendix Search for Similar Smart Contracts

